小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

認(rèn)知即思索:黎曼ζ函數(shù)的意義是什么?(2)

 taotao_2016 2022-05-08 發(fā)布于遼寧省

讓我們今天接著聊黎曼ζ函數(shù):

文章圖片1

這張圖只顯示了正半平面的函數(shù)(s>1)

解析延拓復(fù)平面負(fù)半平面的黎曼函數(shù)是什么呢?(s<0)

文章圖片2

你說道,我的老天爺,這也太可怕了,太復(fù)雜了!

于是,我先給大家看看黎曼ζ函數(shù)(s>1)的圖像,它實(shí)際上涵蓋了復(fù)平面正半軸(s>1)的部分,函數(shù)線上的點(diǎn)代表了復(fù)數(shù)坐標(biāo)(x,yi),這張圖出自up主:3bluebrown

文章圖片3

其實(shí)那個(gè)非常復(fù)雜的解析式只是看上去復(fù)雜而已,只要明白了各部分的意義,就能明白它的意義。

首先,我們看左邊:

文章圖片4

我們再看右邊:

文章圖片5

我們上次已經(jīng)講了s>1范圍內(nèi)的函數(shù)表達(dá)式,相信大家還記著它,這里只是換了個(gè)定義域,s用s'=1-s(s<0)代替了s(s>1)

文章圖片6

s的意義還是我們上次說的,它代表復(fù)平面

文章圖片7

x,y可以隨便取各種數(shù)

至于2π和sin沒什么好說的,它們是普通的復(fù)函數(shù),大家把它們類比為實(shí)平面(x,y)上的y=f(x)去理解就可以了,只不過是復(fù)平面s(x,yi)上的函數(shù)y=f(s)。比如這個(gè)人人皆知的迭代分形就是復(fù)函數(shù)f(s)=s2+C的圖:

文章圖片8

復(fù)變函數(shù):曼德博羅集

那這個(gè)東西什么意思呢?

文章圖片9

Γ是希臘字符,中文名叫伽馬,也就是大寫的γ,它的表達(dá)式是:

文章圖片10

伽馬函數(shù)有什么神奇的性質(zhì)呢?如果看過我之前的文章,大家應(yīng)該還記得階乘怎么算:

文章圖片11

階乘

文章圖片12

也就是說階乘可以形成伽馬函數(shù)形式的無窮積分,文中ε的意思是趨于0的一個(gè)無窮小量,它可以取到任意小,永遠(yuǎn)達(dá)不到0但是無限逼近0。至于這些積分怎么算的,這里就不展示了。我們用軟件就可以算出結(jié)果。

文章圖片13

我們把它廣義化:從自然數(shù)n推廣到實(shí)數(shù)軸x,從實(shí)數(shù)x推廣到復(fù)數(shù)s=x+yi,于是有:

文章圖片14

這些推廣看似是理所應(yīng)當(dāng)?shù)倪^程,實(shí)際上是多年來數(shù)學(xué)家的心血之作

數(shù)學(xué)中重要的是自然現(xiàn)象本身,繁瑣的計(jì)算過程只能是研究這種現(xiàn)象的手段,我們要透過現(xiàn)象看本質(zhì)。

這樣,我們就知道了:

文章圖片15

于是,你再回過頭來看這個(gè)非常重要的黎曼負(fù)半平面解析式

文章圖片16

它長什么樣子呢?它實(shí)際上涵蓋了整個(gè)復(fù)平面負(fù)半軸,函數(shù)線上的點(diǎn)代表了復(fù)數(shù)坐標(biāo)(x,yi),這張圖出自up主:3bluebrown。

文章圖片17

它可以展開成:

文章圖片18

如何才能得到這個(gè)復(fù)平面下才能成立的重要等式呢(不要覺得這個(gè)結(jié)果奇怪,它在物理學(xué)中有廣泛的應(yīng)用):

文章圖片19

只需要把s=-1帶進(jìn)上面的公式就可以了:

文章圖片20

我們知道:

文章圖片21

所以:

文章圖片22

現(xiàn)在,我們已經(jīng)講完了s>1,和s<0區(qū)域內(nèi)的黎曼函數(shù)了,然而最為神秘的s∈(0,1)內(nèi)的函數(shù)還沒有登場。

文章圖片23

s∈(0,1)隱藏著科學(xué)界為之困擾的未解之謎

    本站是提供個(gè)人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多