|
編者按:數(shù)學(xué)的理論往往先行于實際應(yīng)用,在時機成熟的時候迅速成為實際應(yīng)用的有力工具。 作者 | 趙宇飛 編譯 | 廖璐,賈偉
圖正則引理
圖極限 Fig8:左圖為右邊的圖極限所取樣的圖(鄰接矩陣的像素圖像)
稀疏圖
圖論和加性組合 課程鏈接: https://ocw./18-217F19 課程視頻: -> MIT OCW: https://ocw./courses/mathematics/18-217-graph-theory-and-additive-combinatorics-fall-2019/video-lectures/ -> YouTube: https://www./playlist?list=PLUl4u3cNGP62qauV_CpT1zKaGG_Vj5igX -> B站: https://space.bilibili.com/556006423/channel/detail?cid=127140 參考資料 [1] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. [2] Endre Szemerédi, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399–401. [3] László Lovász, Large networks and graph limits, American Mathematical Society Colloquium Publications, vol. 60, American Mathematical Society, Providence, RI, 2012. [4] David Conlon, Jacob Fox, and Yufei Zhao, Extremal results in sparse pseudorandom graphs, Adv. Math. 256 (2014), 206–290. And David Conlon, Jacob Fox, and Yufei Zhao, A relative Szemerédi theorem, Geom. Funct. Anal. 25 (2015), 733–762. And David Conlon, Jacob Fox, and Yufei Zhao, The Green-Tao theorem: an exposition, EMS Surv. Math. Sci. 1 (2014), 249–282. [5] Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math.(2) 167 (2008), 481–547. [6] David Conlon, Jacob Fox, Benny Sudakov, and Yufei Zhao, The regularity method for graphs with few 4-cycles, J. Lond. Math. Soc. (2), to appear. And David Conlon, Jacob Fox, Benny Sudakov, and Yufei Zhao, Which graphs can be counted in C4-free graphs?, arXiv: 2106.03261. [7] Christian Borgs, Jennifer T. Chayes, Henry Cohn, and Yufei Zhao, An Lp theory of sparse graph convergence II: LD convergence, quotients and right convergence, Ann. Probab. 46 (2018), 337–396. [8] Béla Bollobás and Oliver Riordan, Metrics for sparse graphs, Surveys in combinatorics 2009, London Math. Soc. Lecture Note Ser., vol. 365, Cambridge Univ. Press, Cambridge, 2009, pp. 211–287. [9] Ashwin Sah, Mehtaab Sawhney, Jonathan Tidor, and Yufei Zhao, A counterexample to the Bollobás-Riordan conjectures on sparse graph limits, Combin. Probab. Comput., to appear. AI科技評論 聚焦AI前沿研究,關(guān)注AI青年成長 1892篇原創(chuàng)內(nèi)容 公眾號 |
|
|