|
付應(yīng)強(qiáng),李志高
哈爾濱醫(yī)科大學(xué)附屬腫瘤醫(yī)院 哈爾濱醫(yī)科大學(xué)附屬第三醫(yī)院 黑龍江省腫瘤醫(yī)院 近年一些研究表明,質(zhì)子泵抑制劑(PPI)不僅在消化系統(tǒng)疾病方面起作用,而且在乳腺癌的治療中也有重要作用。PPI包括奧美拉唑、泮托拉唑、蘭索拉唑、埃索美拉唑(艾司奧美拉唑)等,它們通過抑制細(xì)胞內(nèi)質(zhì)子排出,增加細(xì)胞內(nèi)體pH值等方式,提高乳腺癌化療藥物效果和誘導(dǎo)乳腺癌細(xì)胞凋亡。本文就PPI在乳腺癌中的相關(guān)研究加以總結(jié),并討論P(yáng)PI在乳腺癌治療中的潛在應(yīng)用。 通訊作者:李志高(drzhigaoli@126.com) 原文參見:實用腫瘤學(xué)雜志. 2017;31(2):179-182.
乳腺癌是一種全身性疾病,其發(fā)病率在女性惡性腫瘤中居首位,死亡率位居第二位【1】。乳腺癌患者的治療和預(yù)后以多種腫瘤特征為依據(jù),包括大小、階段、腫瘤擴(kuò)散程度、多種蛋白質(zhì)的表達(dá)和mRNA等預(yù)后因素【2】。隨著人們對乳腺癌相關(guān)研究的加深,近年來一些研究發(fā)現(xiàn)質(zhì)子泵抑制劑(PPI)對誘導(dǎo)乳腺癌細(xì)胞凋亡【3】、提高化療藥物效果【4-6】、抑制三陰性乳腺癌細(xì)胞的生長【7-8】都具有一定作用。 1 PPI PPI是治療胃和十二指腸潰瘍、胃食管反流病等與酸性相關(guān)疾病的首選藥物【9】,對用H2受體拮抗劑無效的胃和十二指腸潰瘍也有效。在PPI中,奧美拉唑是第一種投入市場的PPI,之后繼續(xù)發(fā)現(xiàn)泮托拉唑(潘妥拉唑)、蘭索拉唑、埃索美拉唑(艾司奧美拉唑)等【10】。PPI為弱堿性化合物,在堿性環(huán)境中不易解離,為非活性狀態(tài),可通過細(xì)胞膜進(jìn)入到壁細(xì)胞分泌管內(nèi),遇到pH為2以下的酸性環(huán)境,PPI可轉(zhuǎn)化為次磺酸和次磺酰胺類化合物,與H+/K+ATP酶中半胱氨酸殘基上的巰基作用,形成二硫鍵,使H+/K+ATP酶失活,從而抑制胃酸的分泌【11】。 2 PPI與腫瘤 PPI多系弱堿性藥物,體外體內(nèi)得到證實PPI抑制腫瘤細(xì)胞生長,并增加化療藥物敏感性【12】。有研究者【13】報道了PPI的使用顯著增加頭頸癌患者的總體生存【14】。流行病學(xué)研究發(fā)現(xiàn)【15】,使用低劑量的PPI可能降低胰腺癌的風(fēng)險。以上研究表明PPI對多種腫瘤可能具有潛在效果。 3 PPI與乳腺癌 3.1 奧美拉唑 奧美拉唑,是一種能夠有效地抑制胃分泌的PPI。對胃蛋白酶分泌也有抑制作用,對胃黏膜血流量改變不明顯,也不影響體溫、胃腔溫度、動脈血壓、靜脈血紅蛋白、動脈氧分壓、二氧化碳分壓及動脈血pH?;加写萍に厥荏w陰性型乳腺腫瘤患者是最難治療的,生存率低。芳香烴受體(AHR)配體可以作為一種抑制雌激素受體陰性型乳腺癌的抗轉(zhuǎn)移藥物【8】。芳香烴受體(AHR)是一種配體激活轉(zhuǎn)錄因子,首次發(fā)現(xiàn)時被當(dāng)作是一種細(xì)胞內(nèi)蛋白,與環(huán)境的有毒物質(zhì)四氯二苯并-p-二噁英(TCDD)密切相關(guān)【16】。AHR激動劑或拮抗劑已經(jīng)證明對多種炎癥疾病、干細(xì)胞穩(wěn)定性及擴(kuò)增、自身免疫性疾病和一些癌癥有效果,顯然這個受體是個重要的藥物靶點【17-24】。研究結(jié)果【25-27】表明在多種AHR激動劑中,奧美拉唑顯示出對三陰性乳腺癌細(xì)胞的抗轉(zhuǎn)移活性。通過使用八種AHR激動劑,包括他莫昔芬、氟他米特、美西律、尼莫地平、奧美拉唑、舒林酸和曲尼斯特來治療MDA-MB-231三陰性乳腺癌細(xì)胞,檢測細(xì)胞增殖和細(xì)胞遷移來確定這些藥物的效果。AHR激動劑,奧美拉唑可以降低乳腺癌細(xì)胞侵襲和轉(zhuǎn)移【8】。 3.2 泮托拉唑 泮托拉唑是不可逆PPI,減少胃酸分泌。在胃壁細(xì)胞的酸性環(huán)境下被激活為環(huán)次磺胺,再特異性地與質(zhì)子泵(即H+/K+ATP酶)上的巰基以共價鍵結(jié)合,使其喪失泌酸功能。腫瘤抗藥性限制了癌癥化療的效果,化療想要對一個腫瘤有效,藥物必須高效地從腫瘤血管中擴(kuò)散出去,穿過腫瘤組織到達(dá)所有癌癥細(xì)胞,才能達(dá)到細(xì)胞毒性作用的濃度【28-29】。由于碳酸和乳酸的生成增加和清除減少,很多實體瘤形成了細(xì)胞外的酸性區(qū)域【30-33】。在酸性細(xì)胞外環(huán)境和中性-堿性細(xì)胞內(nèi)pH之間的pH梯度變化可能影響藥物的攝取和活性,細(xì)胞包括酸性細(xì)胞器,如溶酶體和內(nèi)體【34-36】。泮托拉唑大于200μmol/L時增加了細(xì)胞內(nèi)內(nèi)體的pH,同時增加了細(xì)胞核對多柔比星(阿霉素)的攝入,提高了多柔比星在實體瘤血管中的擴(kuò)散,使用泮托拉唑提高實體腫瘤中抗癌藥物的細(xì)胞毒性和擴(kuò)散能力【6】。 3.3 蘭索拉唑 PPI抑制了一種乳腺癌細(xì)胞增殖,蘭索拉唑在PPI中對于誘導(dǎo)乳腺癌細(xì)胞死亡更有效。在MDA-MB-231乳腺癌細(xì)胞株植入的裸鼠中,蘭索拉唑顯著抑制了腫瘤發(fā)生和誘導(dǎo)了大范圍的腫瘤細(xì)胞凋亡。蘭索拉唑明顯抑制細(xì)胞內(nèi)質(zhì)子排出,導(dǎo)致了乳腺癌細(xì)胞內(nèi)的ATP級別、溶酶體堿化和活性氧簇的增加。活性氧簇清除劑N-乙酰半胱氨酸和二苯基氯化碘鹽,是一種特定的NADPH氧化酶抑制藥物,顯著消除了由蘭索拉唑?qū)е碌娜橄侔┘?xì)胞內(nèi)的活性氧簇的積累【3】。蘭索拉唑也可以增加內(nèi)體pH,影響乳腺癌細(xì)胞對多柔比星攝取【5】。 3.4 埃索美拉唑(艾司奧美拉唑) 一項研究【4】探究了轉(zhuǎn)移性乳腺癌使用多西他賽-順鉑方案化療的同時間歇性服用大劑量埃索美拉唑(艾司奧美拉唑)的效果。患者分為三組,第一組使用化療多西他賽-順鉑方案化療,第二組多西他賽-順鉑方案化療的同時在化療第一天服用埃索美拉唑(艾司奧美拉唑)80mg口服,一日兩次,持續(xù)三天,之后每周服用三天最多持續(xù)66周,第三組與第二組相同只是埃索美拉唑(艾司奧美拉唑)的服用劑量改為100mg。研究結(jié)果顯示間歇性大劑量PPI對于增加了抗菌素對轉(zhuǎn)移性乳腺癌患者的效果,同時并沒有證據(jù)顯示發(fā)生額外的藥物毒性。另一個研究表明【7】,在三陰性乳腺癌細(xì)胞株MDA-MB-468中,埃索美拉唑(艾司奧美拉唑)通過增加其細(xì)胞內(nèi)酸化抑制了離體乳腺癌細(xì)胞的生長。 4 小結(jié)與展望 近年乳腺癌發(fā)病率在世界范圍內(nèi)位居所有惡性腫瘤的第2位【37-39】。筆者認(rèn)為PPI在乳腺癌中的應(yīng)用,與化療藥物聯(lián)用提高化療效果的價值更大,且可行性更高。PPI的優(yōu)勢在于臨床使用廣泛,與化療藥物相比副作用很低,與化療藥物聯(lián)合應(yīng)用時,也沒有顯示產(chǎn)生額外的藥物毒性。不足在于PPI抑制腫瘤細(xì)胞增殖和提高化療敏感性的作用還需要進(jìn)一步證實,其機(jī)制目前尚未十分清楚,這些都有待于研究,且對于不同類型乳腺癌的效果沒有分別探究。本文旨在探討進(jìn)一步研究PPI在乳腺癌中的應(yīng)用的可能性,這是此類藥物的全新應(yīng)用,此類藥物無法與靶向治療藥物、內(nèi)分泌治療藥物等一線治療藥物相比,但希望PPI在乳腺癌中治療煥發(fā)新的生機(jī),成為一種新的輔助治療乳腺癌的藥物。 參考文獻(xiàn) Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7. Moulder S, Hortobagyi GN. Advances in the treatment of breast cancer. Womens Health. 2005;1(3):359-363. Zhang S, Wang Y, Li SJ. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion. Biochem Biophys Res Commun. 2014;448(4):424-429. Wang BY, Zhang J, Wang JL, et al. Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. J Exp Clin Cancer Res. 2015;34(1):85. Man Y, Lee C, Wang M, et al. Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors. Cancer Sci. 2015;106(10):1438-1447. Patel KJ, Lee C, Tan Q, et al. Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: a potential strategy to improve the therapy of solid tumors. Clin Cancer Res. 2013;19(24):6766-6776. Goh W, Sleptsova-Freidrich I, Petrovic N. Use of proton pump inhibitors as adjunct treatment for triple-negative breast cancers. An introductory study. J Pharm Pharm Sci. 2014;17(3):439-446. Jin UH, Lee SO, Pfent C, et al. The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis. BMC Cancer. 2014;14(14):498. 劉波, 姚鴻萍. 臨床常用質(zhì)子泵抑制劑的研究進(jìn)展. 西北藥學(xué)雜志. 2014(3):328-330. Shin JM, Kim N. Pharmacokinetics and pharmacodynamics of the proton pump inhibitors. J Neurogastroenterol Motil. 2013;19(1):25-35. 毛煜, 佘佳紅, 袁伯俊. 苯并咪唑類質(zhì)子泵抑制劑的藥理和臨床研究進(jìn)展. 中國新藥雜志. 2006;15(1):17-21. Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX hosphorylation on serine 139. J Biol Chem. 1998;273: 5858-5868. Chen YN, Mickley LA, Schwartz AM, et al. Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem. 1990;265: 10073-10080. Lee JS, Scala S, Matsumoto Y, et al. Reduced drug accumulation and multidrug resistance in human breast cancer cells without associated P-glycoprotein or MRP overexpression. J Cell Biochem. 1997;65: 513-526. Litman T, Brangi M, Hudson E, et al. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR(ABCG2). J Cell Sci. 2000;113:2011-2021. Poland A, Glover E, Kende AS. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem. 1976;251(16):4936-4946. Dinatale BC, Schroeder JC, Francey LJ, et al. Mechanistic insights into the events that lead to synergistic induction of interleukin 6 transcription upon activation of the aryl hydrocarbon receptor and inflammatory signaling. J Biol Chem. 2010;285(32):24388-24397. Murray IA, Krishnegowda G, DiNatale BC, et al. Development of a selective modulator of aryl hydrocarbon (Ah) receptor activity that exhibits anti-inflammatory properties. Chem Res Toxicol. 2010;23(5):955-966. Benson JM, Shepherd DM. Aryl hydrocarbon receptor activation by TCDD reduces inflammation associated with Crohn's disease. Toxicol Sci. 2011;120(1):68-78. Murray IA, Morales JL, Flaveny CA, et al. Evidence for ligand-mediated selective modulation of aryl hydrocarbon receptor activity. Mol Pharmacol. 2010;77(2):247-254. Boitano AE, Cooke MP. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329(5997):1345-1348. Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H) 17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453(7191):65-71. Veldhoen M, Hirota K, Westendorf AM, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453(7191):106-109. Kerkvliet NI, Steppan LB, Vorachek W, et al. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes. Immunotherapy. 2009;1(4):539-547. Hsu EL, Yoon D, Choi HH, et al. A proposed mechanism for the protective effect of dioxin against breast cancer. Toxicol Sci. 2007;98(2):436-444. Hall JM, Barhoover MA, Kazmin D, et al. Activation of the aryl-hydrocarbon receptor inhibits invasive and metastatic features of human breast cancer cells and promotes breast cancer cell differentiation. Mol Endocrinol. 2010;24(2):359-369. Wang T, Gavin HM, Arlt VM, et al. Aryl hydrocarbon receptor activation during pregnancy, and in adult nulliparous mice, delays the subsequent development of DMBA-induced mammary tumors. Int J Cancer. 2011;128(7):1509-1523. Di Paolo A, Bocci G. Drug distribution in tumors, mechanisms, role in drug resistance, and methods for modification. Curr Oncol Rep. 2007;9(2):109-114. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev. 2006;6(8):583-592. Simon S, Roy D, Schindler M. Intracellular pH and the control of multidrug resistance. Proc Natl Acad Sci USA. 1994;91(3):1128-1132. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373-4384. Rotin D, Robinson B, Tannock IF. Influence of hypoxia and an acidic environment on the metabolism and viability of cultured cells: potential implications for cell death in tumors. Cancer. 1986;46(6):2821-2826. Helmlinger G, Sckell A, Dellian M, et al. Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res. 2002;8(4):1284-1291. Gillies RJ, Liu Z, Bhujwalla Z. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am J Physiol. 1994;267(1):195-203. Mccoy CL, Parkins CS, Chaplin DJ, et al. The effect of blood flow modification on intra-and extracellular pH measured by 31P magnetic resonance spectroscopy in murine tumours. Br J Cancer. 1995;72(4):905-911. Raghunand N, He X, Van SR, et al. Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer. 1999;80(7):1005-1011. Liu H, Liu JY, Wu X, et al. Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker. Int J Biochem Mol Biol. 2010;1:69-89. De Schrijver E, Brusselmans K, Heyns W, et al. RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res. 2003;63:3799-3804. Zhou W, Simpson PJ, McFadden JM, et al. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells. Cancer Res. 2003;63(21):7330-7337.




|