小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

經(jīng)濟(jì)學(xué)人 | 如果有朝一日,人工智能獲得諾貝爾醫(yī)學(xué)獎(jiǎng).......

 長(zhǎng)沙7喜 2021-07-11

1



21天翻譯打卡訓(xùn)練營(yíng)第五期
課程由翻譯組8位翻譯一筆以及
8位翻譯二筆老師錄制和答疑,
共21個(gè)錄播視頻,長(zhǎng)度在15-20分鐘
難度在二筆與三筆之間
課程內(nèi)容包括英譯中以及中譯英
具體可以點(diǎn)擊以下超鏈了解
1. 21天翻譯打卡訓(xùn)練營(yíng)第五期
2. 翻譯課視頻Demo
第一期報(bào)名291
第二期報(bào)名525
第三期報(bào)名454
第四期報(bào)名375
第五期將于2021年7月18日發(fā)車
本期有三個(gè)復(fù)習(xí)日,課程為24天。
早鳥票:0609-0620,可在報(bào)名頁(yè)面領(lǐng)取25元優(yōu)惠券
中鳥票:0621-0706,可在報(bào)名頁(yè)面領(lǐng)取15元優(yōu)惠券
晚鳥票:0707-0717,可在報(bào)名頁(yè)面領(lǐng)取5元優(yōu)惠券(兩人拼團(tuán)優(yōu)惠10元)
感興趣的小伙伴趕緊掃碼報(bào)名入群
(若群已滿,煩請(qǐng)?zhí)砑有【幬⑿舉ducation0603)

特別注意:
1. 思考再三后報(bào)名,一旦報(bào)名,虛擬商品概不退費(fèi)。
2. 課程結(jié)束后保留兩個(gè)月有效期,給大家充分的時(shí)間好好復(fù)習(xí)。
3.最終獎(jiǎng)學(xué)金提現(xiàn)平臺(tái)會(huì)收0.6%的手續(xù)費(fèi),請(qǐng)慎重考慮后再報(bào)課。

相關(guān)經(jīng)驗(yàn)貼如下:
一筆經(jīng)驗(yàn)貼
二筆經(jīng)驗(yàn)貼
---END---

2


聽(tīng)力|精讀|翻譯|詞組

Rage against the machine

橫眉冷對(duì)計(jì)算機(jī)

英文部分選自經(jīng)濟(jì)學(xué)人20210702期What If版塊

圖片

If an AI won the Nobel prize for medicine

如果有朝一日,人工智能獲得諾貝爾醫(yī)學(xué)獎(jiǎng)......

Rage against the machine

橫眉冷對(duì)計(jì)算機(jī)

Should the greatest prize in medical research really be awarded to a non-human? An imagined scenario from 2036

醫(yī)學(xué)研究的最高獎(jiǎng)?wù)娴膽?yīng)該頒發(fā)給非人類么?一段對(duì)2036年的設(shè)想

Editor’s note: This year What If?, our annual collection of scenarios, considers the future of health. Each of these stories is fiction, but grounded in historical fact, current speculation and real science. They do not present a unified narrative but are set in different possible futures

編者按:年度欄目“如果……會(huì)怎樣?”旨在探討一些假設(shè)場(chǎng)景,今年我們聚焦健康領(lǐng)域的未來(lái)。這里面的每一個(gè)故事雖為虛構(gòu),但都建立在歷史事實(shí)、當(dāng)前猜測(cè)以及真實(shí)科學(xué)的基礎(chǔ)之上。這些故事各自成篇,設(shè)定于不同的未來(lái)世界。

IT WAS A scene that the Nobel committee had dearly hoped to avoid. As the recipients of this year’s prizes filed into the Stockholm Concert Hall to take their seats, dozens of protesters, including several former laureates, clashed with police in the streets outside. They had gathered to express their opposition to the unprecedented decision to award the Nobel prize in physiology or medicine to an artificial intelligence.

點(diǎn)擊顯示翻譯

今年的諾獎(jiǎng)得主們?cè)谒沟赂鐮柲σ魳?lè)廳就坐時(shí),外面街道上大批的抗議者(包括幾位前諾獎(jiǎng)得主)與警方發(fā)生了沖突。他們聚集在一起,反對(duì)將諾貝爾生理學(xué)獎(jiǎng)或醫(yī)學(xué)獎(jiǎng)?lì)C給人工智能這一史無(wú)前例的決定。這是諾貝爾獎(jiǎng)委員會(huì)過(guò)去一直極力避免的一幕。

注釋:

file in(to something or some place) To move or process into a place or thing in a line.

The committee’s citation recognised YULYA—the nickname of a machine-learning system officially known as System for Automated Lymphoma Diagnosis—as the discoverer of ancillary vulnerability, a mechanism whereby specific pairs of antibiotics, working in tandem, can prove effective against bacteria that are otherwise resistant. The committee estimates that in the 18 months since the discovery, which occurred when the death rate associated with the failure of existing antibiotics had risen to around 2.5m a year, YULYA’s work has saved around 4m lives, both through direct treatment of infections and by allowing the resumption of surgical procedures, including caesarean sections, that were considered too dangerous without antibiotics.

點(diǎn)擊顯示翻譯

諾獎(jiǎng)委員會(huì)的頒獎(jiǎng)詞中,肯定了YULYA(一個(gè)機(jī)器學(xué)習(xí)系統(tǒng)的昵稱,官方名稱為“自動(dòng)化淋巴瘤診斷系統(tǒng)”)在發(fā)現(xiàn)附屬脆弱性(ancillary vulnerability)方面作出的貢獻(xiàn)。通過(guò)附屬脆弱性機(jī)制,一些特定的抗生素組合在協(xié)同作用下可以有效解決細(xì)菌耐藥性問(wèn)題。委員會(huì)估算,由于當(dāng)時(shí)全球每年與抗生素失效相關(guān)的死亡人數(shù)已達(dá)約250萬(wàn),自YULYA發(fā)現(xiàn)附屬脆弱性的18個(gè)月內(nèi),通過(guò)直接治療感染,以及幫助恢復(fù)包括剖宮產(chǎn)在內(nèi)的一系列(若缺乏有效抗生素則極其危險(xiǎn)的)手術(shù),它已經(jīng)拯救了大約400萬(wàn)條生命。

注釋:

1. citation:A formal statement of the accomplishments of one being honored with an academic degree.

2. Lymphoma: 淋巴瘤

3. caesarean sections剖宮產(chǎn)

Bringing to an end the greatest global public-health crisis since the coronavirus pandemic of 2020-22 would, you might have thought, be considered qualification enough for anyone, whether human or machine, to win the Nobel prize. But the decision has proved hugely controversial. Though the statutes of the Nobel Foundation have historically been interpreted as implying that only a human can win the award, another of its dictates was deemed to take precedence: recognition for having “conferred the greatest benefit to humankind” in the preceding year. Another factor behind the break with tradition was a demographic shift in the prize committee. When two of the committee’s five members succumbed to bacterial infections last year, younger replacements were elected, both of whom happened to have used machine-learning systems in their doctoral research.

點(diǎn)擊顯示翻譯

你也許認(rèn)為,任何個(gè)體(無(wú)論是人還是機(jī)器),如果能夠終結(jié)自2020-2022年新冠疫情以來(lái)最嚴(yán)重的全球公共衛(wèi)生危機(jī),都有足夠的資格拿下諾貝爾獎(jiǎng)。然而事實(shí)證明,這個(gè)決定極具爭(zhēng)議。盡管諾貝爾獎(jiǎng)基金會(huì)的章程一直被解讀為只有人類可以獲獎(jiǎng),但是其中另一項(xiàng)規(guī)定似乎更需優(yōu)先考慮:表彰上一年度“為人類作出杰出貢獻(xiàn)”。打破傳統(tǒng)的另一個(gè)原因是諾獎(jiǎng)委員會(huì)里人口結(jié)構(gòu)的變化。前一年中,五名時(shí)任委員中有兩位因細(xì)菌感染離世,而兩名更年輕的新當(dāng)選評(píng)委在他們的博士研究中均使用過(guò)機(jī)器學(xué)習(xí)。

YULYA was originally built to tackle a different problem: finding more effective cancer treatments. One of the world’s most advanced causal nets, it is one of a new generation of artificial-intelligence systems combining the pattern-recognition skills of conventional “deep” neural networks with the ability to distinguish causation from mere correlation. By examining records from patient databases, in conjunction with a corpus of papers from medical journals and historical data from pharmaceutical companies, it sought to identify the patterns of symptoms that led to the most severe outcomes, in order to diagnose them earlier. It was also programmed to evaluate the effectiveness of different treatments, including combinations of treatments, in order to suggest new therapeutic regimens that could be tested in patients.

點(diǎn)擊顯示翻譯

創(chuàng)造YULYA的初衷是為了解決另一個(gè)問(wèn)題:尋找更有效的癌癥療法。作為世界上最先進(jìn)的因果性網(wǎng)絡(luò)之一,新一代人工智能系統(tǒng)YULYA結(jié)合了傳統(tǒng) “深度 ”神經(jīng)網(wǎng)絡(luò)的模式識(shí)別技能和區(qū)分因果關(guān)系與單純關(guān)聯(lián)性的能力。通過(guò)檢查病患數(shù)據(jù)庫(kù)中的記錄,結(jié)合醫(yī)學(xué)期刊的論文庫(kù)和制藥公司的歷史數(shù)據(jù),該系統(tǒng)試圖識(shí)別出導(dǎo)致最嚴(yán)重后果的癥狀模式,從而盡早診斷。YULYA還被用來(lái)評(píng)估不同治療方法的有效性,包括組合療法,以便找到可以在病人身上測(cè)試的新治療方案。

Its focus shifted, however, when a software upgrade in 2034 accidentally gave it access to all recent papers in medical journals, rather than just those associated with cancer. YULYA duly began to crunch data relating to antimicrobial resistance, which accounted for a steadily growing proportion of medical-research papers as the crisis intensified. At first, its requests for more data in specific areas, and suggestions for new approaches to treatment, were thought to be errors, because they did not relate to cancer. Then YULYA’s operators realised what had happened, and saw that it had used its reasoning capabilities to build a testable hypothesis: the forerunner of what would become ancillary vulnerability. It highlighted the data that would be needed to validate the hypothesis, including specific guidelines as to how it should be collected. “It amounted to a full-scale programme of research,” says Anisha Rai, one of YULYA’s creators.

點(diǎn)擊顯示翻譯

然而,2034年的一次軟件升級(jí)意外地使YULYA能夠訪問(wèn)所有最新醫(yī)學(xué)期刊論文(不僅僅是那些與癌癥有關(guān)的論文),這時(shí)該系統(tǒng)的研究重點(diǎn)也發(fā)生了轉(zhuǎn)移。YULYA正式開(kāi)始處理與抗菌素耐藥性有關(guān)的數(shù)據(jù),隨著公共衛(wèi)生危機(jī)加劇,抗菌素耐藥性在醫(yī)學(xué)研究論文中所占的比例也穩(wěn)步上升。起初,YULYA提出更多特定領(lǐng)域的數(shù)據(jù)請(qǐng)求,并給出新治療方法的建議,但都因與癌癥無(wú)關(guān)而被人為是程序產(chǎn)生了錯(cuò)誤。后來(lái)YULYA的操作人員意識(shí)到了這一狀況,并發(fā)現(xiàn)YULYA利用自身的推理能力建立了一個(gè)可驗(yàn)證的假設(shè):這就是附屬脆弱性的前身。YULYA重點(diǎn)關(guān)注驗(yàn)證該假設(shè)所需的數(shù)據(jù),包括如何收集數(shù)據(jù)的具體準(zhǔn)則。YULYA的創(chuàng)造者之一Anisha Rai表示:“這相當(dāng)于一個(gè)全面的研究計(jì)劃。”

Under less exceptional circumstances, such trials might never have been authorised. Many funding bodies require scientists to lay bare the reasoning process of AI systems, in order to be sure that their recommendations do not lead to deadly conclusions. Dr Rai and her colleagues got funding for YULYA’s trial by playing down its role in suggesting the hypothesis. Only when the results showed promise did they publish YULYA’s original proposals.

點(diǎn)擊顯示翻譯

普遍情況下,這種試驗(yàn)可能永遠(yuǎn)不會(huì)獲批。許多資助機(jī)構(gòu)要求科學(xué)家披露人工智能系統(tǒng)的推理過(guò)程,確保它們的建議不會(huì)導(dǎo)致致命結(jié)果。Rai博士和她的同事們通過(guò)淡化YULYA在提出假說(shuō)方面的作用,為YULYA的試驗(yàn)?zāi)嫉觅Y金。一直到得出的結(jié)論有望成功的時(shí)候,他們才公布YULYA的最初建議。

That, in turn, led to a heated debate about whether YULYA, or its creators, deserved credit for the breakthrough. Dr Rai continues to insist that YULYA deserves sole credit, a position that has prompted the departure of several members of her original team in the past year. She even refused to go to Stockholm to receive the award on YULYA’s behalf from the queen of Sweden. “It’s not my prize,” she says.

點(diǎn)擊顯示翻譯

這反而引發(fā)了一場(chǎng)關(guān)于取得突破的功勞屬于YULYA還是其創(chuàng)造者為的激烈爭(zhēng)論。Rai博士仍堅(jiān)持認(rèn)為功勞只屬于YULYA,這一立場(chǎng)導(dǎo)致她原團(tuán)隊(duì)中的幾位成員在過(guò)去一年中相繼離職。她甚至拒絕代表YULYA前往斯德哥爾摩接受瑞典女王的頒獎(jiǎng)。她表示:“這份榮譽(yù)不屬于我。”

AIs are commonly used to predict the onset of diseases like Alzheimer’s, make personalised treatment recommendations and enhance the diagnostic abilities of physicians. And the use of AI in drug discovery, in particular to help pharmaceutical companies wade through databases, is not new. In 2020 an algorithm developed at the Massachusetts Institute of Technology made headlines when it identified a new antibiotic. Dubbed halicin, after the computer in the film “2001: A Space Odyssey”, it proved to be effective against some resistant bacteria, but was limited in its scope. “Ancillary vulnerability makes halicin look like a homeopathic treatment, like a placebo,” says Una Científica, a researcher at the Houssay Institute in Buenos Aires.

點(diǎn)擊顯示翻譯

人工智能通常用于預(yù)測(cè)阿爾茨海默氏癥等疾病的發(fā)作,提出個(gè)性化的治療建議并提高醫(yī)生的診斷能力。將人工智能用于藥品研發(fā)——尤其是幫助制藥公司處理數(shù)據(jù)——并不是什么新鮮事。2020年,麻省理工大學(xué)開(kāi)發(fā)的一個(gè)算法因發(fā)現(xiàn)了一種新型抗生素而登上新聞?lì)^條。為致敬電影《2001太空漫游》中的超級(jí)計(jì)算機(jī)HAL,該抗生素被命名為halicin。它可以對(duì)抗一些耐藥細(xì)菌,但范圍有限。布宜諾斯艾利斯(阿根廷首都)奧賽(Houssay)研究所的研究員Una Científica表示:“附屬脆弱性讓halicin看起來(lái)像是一種順勢(shì)療法,和安慰劑類似?!?/p>

注:

順勢(shì)療法:是替代醫(yī)學(xué)的一種。順勢(shì)療法的理論基礎(chǔ)是“同樣的制劑治療同類疾病”,意思是為了治療某種疾病,需要使用一種能夠在健康人中產(chǎn)生相同癥狀的藥劑

Even so, the Nobel committee’s reference to YULYA’s “discovery” has angered those who see it as little more than a clever tool. “YULYA is an AI capable of winning a Nobel. That is not the same thing as an AI that’s capable of discovery,” says Hars Kritik of the European Robotics Institute in Prague. He argues that even the best AIs are only useful in specialised areas like drug design, where large quantities of data are married to well-defined metrics of success. Saying that they can make discoveries, he says, waving a placard outside the concert hall, is “flawed anthropomorphism”.

點(diǎn)擊顯示翻譯

即便如此,諾貝爾委員會(huì)將附屬脆弱性稱為YULYA的“發(fā)現(xiàn)”,讓很多人大為惱火,他們認(rèn)為YULYA只不過(guò)是一個(gè)聰明的工具。布拉格歐洲機(jī)器人研究所的Hars Kritik指出,“YULYA作為一種人工智能工具雖然可以獲得諾獎(jiǎng),但并不代表她能夠發(fā)現(xiàn)新事物?!?nbsp;他認(rèn)為,即使是最好的人工智能也只能在藥物設(shè)計(jì)等專業(yè)領(lǐng)域發(fā)揮用處,在這些領(lǐng)域中,成功的明確衡量標(biāo)準(zhǔn)離不開(kāi)大量的數(shù)據(jù)。他在音樂(lè)廳外一邊揮舞著標(biāo)語(yǔ)牌,一邊說(shuō)道:把人工智能說(shuō)成能夠發(fā)現(xiàn)新事物是一種“有缺陷的擬人論”。

Rightly or wrongly, YULYA is unlikely to be the last artificial intelligence to win a Nobel prize. Sources within the Nobel Foundation say that similar nominations have been received for prizes in physics and chemistry, as AI systems are used to search for new materials and chemical compounds suitable for use in batteries, solar panels and carbon-capture membranes. Given the chaos that erupted in Stockholm this week, however, the chances of an AI winning the Nobel peace prize seem rather more remote.

點(diǎn)擊顯示翻譯

無(wú)論對(duì)錯(cuò),YULYA都不太可能是最后一個(gè)獲得諾貝爾獎(jiǎng)的人工智能工具。諾貝爾基金會(huì)內(nèi)部人士稱,物理學(xué)和化學(xué)獎(jiǎng)也收到了類似的提名,因?yàn)槿斯ぶ悄芟到y(tǒng)被用于尋找適用于電池、太陽(yáng)能電池板和碳捕獲膜的新材料和化合物。然而,考慮到本周斯德哥爾摩爆發(fā)的混亂,人工智能獲得諾貝爾和平獎(jiǎng)的可能性似乎微乎其微。

翻譯組:

Cathy,女,春都MTIer,專業(yè)翻譯愛(ài)好者

Frank,男,帝都MTIer,愛(ài)看球,愛(ài)踢球,愛(ài)讀經(jīng)濟(jì)學(xué)人

Diamond,男,搬磚工,理工科永久腦損傷,學(xué)習(xí)翻譯的小學(xué)生

校對(duì)組:

奧莉,女,擼貓狂魔,強(qiáng)迫癥患者

Rachel,學(xué)理工科,愛(ài)跳芭蕾,熱愛(ài)文藝的非典型翻譯

Mia,女,期待快點(diǎn)畢業(yè)的MTIer,有志從事翻譯工作的小文青

感謝其他平臺(tái)編輯作者:

B站地址:

https://space.bilibili.com/522030734

編輯:Daisy,勤勤懇懇工具人,B站客服的好朋友

知乎地址:

zhihu.com/people/damon0922 

編輯:jill,會(huì)展經(jīng)濟(jì),想跨界英專的英語(yǔ)學(xué)渣

微博地址:

https://weibo.com/u/2375202237

編輯:Erin,在校大學(xué)生一枚,TE愛(ài)好者

3


觀點(diǎn)|評(píng)論|思考

本次感想
Very,電氣民工,經(jīng)濟(jì)學(xué)人資淺愛(ài)好者

文章開(kāi)頭的一幕很具有典型性,無(wú)論任何決定,在除了某大國(guó)外的其他地區(qū)幾乎總是有抗議者,理論上而言這也很正常,絕大部分決定總是存在爭(zhēng)議,人們也應(yīng)該有表達(dá)相左意見(jiàn)的權(quán)利和途徑。但這并不是我們今天討論的重點(diǎn)。我的關(guān)注點(diǎn)有兩個(gè),所謂人工智能并非只是一臺(tái)設(shè)備,還包括了設(shè)備的設(shè)計(jì)制造以及后期維護(hù)方;此外,對(duì)于此案例而言,還有一個(gè)更加重要的群體,那就是驗(yàn)證人工智能的建議是否正確的團(tuán)隊(duì)。前者文中已經(jīng)提到了,似乎在文章作者看來(lái),設(shè)計(jì)制造完一臺(tái)人工智能設(shè)備后就萬(wàn)事大吉了,但顯然這是外行人的觀點(diǎn),在現(xiàn)有的技術(shù)條件下(文章也說(shuō)了這是根據(jù)歷史事實(shí)和真實(shí)科學(xué)的推測(cè),也就是說(shuō)這不是毫無(wú)基礎(chǔ)的科學(xué)幻想),所有所謂的人工智能或者類似產(chǎn)品,都需要進(jìn)行維護(hù),并不存在如電影里那般一勞永逸的可能性,而且維護(hù)團(tuán)隊(duì)的貢獻(xiàn)絕對(duì)不亞于人工智能設(shè)備本身,所以人工智能是一個(gè)整體的概念,包括設(shè)計(jì)制造、設(shè)備本身和后期維護(hù)管理團(tuán)隊(duì),單獨(dú)凸顯這臺(tái)設(shè)備既是一種認(rèn)知錯(cuò)誤,更是一種荒唐可笑的舉動(dòng)。所以從這個(gè)角度來(lái)看,把獎(jiǎng)?lì)C給這臺(tái)設(shè)備(或者這段程序)是無(wú)知的行為。

其二,目前科學(xué)家提出的假設(shè)的確大部分是由另外的科學(xué)家進(jìn)行分析驗(yàn)證,來(lái)證明或者否定這個(gè)假設(shè)。但這些假設(shè)有一個(gè)大的前提,就是科學(xué)家擁有足夠的背景知識(shí)和可靠性,不會(huì)提出一些超出邏輯認(rèn)知范圍的假設(shè),因?yàn)槲覀兪侨祟?,我們的頭腦中會(huì)有一個(gè)范圍,一個(gè)屬于常識(shí)邏輯的范圍,就好像我們?cè)跇琼敳粫?huì)跳下去,我們?cè)隈R路上不會(huì)走向高速行駛的汽車,但是人工智能并不存在這種常識(shí)邏輯,它也許擁有預(yù)設(shè)的一些邊緣,但是這種邊緣總是有限的,不可能觸及到全部的領(lǐng)域,所以人工智能在進(jìn)行假設(shè)時(shí)也不可能擁有常識(shí)性邏輯邊緣,這樣一來(lái),也許它的假設(shè)和想象力比人類會(huì)更加廣闊,倘若是走圍棋,那倒無(wú)妨,但是如果是文中提及的藥品之類,這種便是毫無(wú)底線的假設(shè),從這個(gè)意義上來(lái)說(shuō),對(duì)于假設(shè)的驗(yàn)證就像是人工智能的監(jiān)護(hù)人,人工智能更像是一個(gè)毫無(wú)常識(shí)的永不長(zhǎng)大的小嬰兒,所以從這個(gè)意義上來(lái)說(shuō),如果人工智能的猜想對(duì)了,這個(gè)獎(jiǎng)應(yīng)該頒給它的監(jiān)護(hù)人,而不是嬰兒自己。

我想文章主要還是想表達(dá)人工智能對(duì)于科學(xué)貢獻(xiàn)可能的突破性和重要性,單就這點(diǎn)來(lái)說(shuō)是沒(méi)有任何問(wèn)題的,但是作者試圖將這個(gè)概念融入一個(gè)假象的場(chǎng)景之中就略顯愚笨了,這就好比網(wǎng)民們老是說(shuō)的梅羅和貝馬球王同場(chǎng)競(jìng)技,亦或是做一些違反常識(shí)和科學(xué)的假設(shè),以試圖達(dá)到吸引眼球、最終表達(dá)自己觀點(diǎn)的目的,只能說(shuō)水品不高、技術(shù)不行,還不如將前提去掉,說(shuō)自己是科幻場(chǎng)景,如此大家討論起來(lái)可能還會(huì)更加盡興一些。

4


愿景

打造

獨(dú)立思考 | 國(guó)際視野 | 英文學(xué)習(xí)

小組

現(xiàn)有經(jīng)濟(jì)學(xué)人打卡(討論)群一個(gè),每周必須完成一篇經(jīng)濟(jì)學(xué)人打卡,每個(gè)人只有一次機(jī)會(huì)進(jìn)群,一旦沒(méi)有完成打卡任務(wù),請(qǐng)出后不能再次加入。如果您也有興趣,可聯(lián)系小編WeChat : Education0603。由于每天加小編人很多,為提高效率,大家添加小編,暗號(hào)“TE打卡群', 通過(guò)后,請(qǐng)做好以下三點(diǎn),否則不回復(fù),謝謝理解。

1.轉(zhuǎn)發(fā)公號(hào)推文到英語(yǔ)學(xué)習(xí)群或者朋友圈

2.回答以下三個(gè)問(wèn)題

為什么加入?你的初衷是什么?

你對(duì)經(jīng)濟(jì)學(xué)人的了解?

你希望離開(kāi)的時(shí)候能得到什么?

3.加小編后做個(gè)簡(jiǎn)單的自我介紹,閱讀群規(guī)能做到方可進(jìn)群

圖片

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多