|
如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:以上結(jié)論中,你認為正確的有 .(填序號)解:①∵FH與CG,EH與CF都是矩形ABCD的對邊AD、BC的一部分,②點H與點A重合時,設(shè)BF=x,則AF=FC=8﹣x,翻折變換(折疊問題);菱形的判定;矩形的性質(zhì).①先判斷出四邊形CFHE是平行四邊形,再根據(jù)翻折的性質(zhì)可得CF=FH,然后根據(jù)鄰邊相等的平行四邊形是菱形證明,判斷出①正確;②點H與點A重合時,設(shè)BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,點G與點D重合時,CF=CD,求出BF=4,然后寫出BF的取值范圍,判斷出②正確;③根據(jù)菱形的對角線平分一組對角線可得∠BCH=∠ECH,然后求出只有∠DCE=30°時EC平分∠DCH,判斷出③錯誤;④過點F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判斷出④正確.
|