小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

礦渣P104

 看見就非常 2020-07-09

最近開始搗鼓TensorFlow ,訓(xùn)練時覺得CPU跑起來時間太長,手頭只有A卡,先配置麻煩,于是就想買塊N卡來跑??戳薑40、K80等計(jì)算卡,參考nvidia官網(wǎng)GPU Compute Capability,最后因?yàn)槔械谋拘跃驮邳S魚撿了一塊礦卡P104-100(號稱是礦版1070,Compute Capability 6.1),礦卡本身是4G顯存,可以刷Bios魔改8G顯存,690元的價(jià)格覺得還能接受。就下單一張技嘉

風(fēng)扇版本,結(jié)果發(fā)來是微星的低算力卡,被JS坑了一把。嫌麻煩就含淚收下了。

外觀展示

礦渣P104-100魔改8G,機(jī)器學(xué)習(xí)再就業(yè)

P104具體參數(shù),

礦渣P104-100魔改8G,機(jī)器學(xué)習(xí)再就業(yè)

GPU-Z顯示刷完bios后顯存確實(shí)是8G了。這個P104據(jù)說也可以像P106一樣操作來玩游戲,我用來跑機(jī)器學(xué)習(xí)就沒有試,不過這些礦卡都是PCIe 1X,或許游戲帶寬是問題吧。附上顯卡bios,供有需要值友使用:8wx6。刷bios需謹(jǐn)慎。

安裝tensorflow-gpu環(huán)境

我使用anaconda安裝tensorflow-gpu,簡單給大家介紹一下步驟

  • 下載安裝anaconda,安裝時注意勾選add anaconda to my PATHenvironment variable

  • 打開cmd,輸入以下命令:

conda create -n tensorflow pip python=3.7 遇到y(tǒng)/n時都選擇y

  • 輸入命令:activate tensorflow

  • 使用國內(nèi)的源,采用pip安裝輸入以下命令:

pip install --default-timeout=100 --ignore-installed --upgradetensorflow-gpu==2.0.1 -i https://pypi.tuna./simple

  • 下載并安裝cuda 10.0和cudnn。將cuDNN解壓。將解壓出來的三個文件夾下面的文件放到對應(yīng)的CUDA相同文件夾下。安裝cuda 10.1有些文件需要重命名。

  • 并在 “我的電腦-管理-高級設(shè)置-環(huán)境變量”中找到path,添加以下環(huán)境變量(cuda使用默認(rèn)安裝路徑):

C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.0bin

C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.0libnvvp

C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.0lib

C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.0include

礦渣P104-100魔改8G,機(jī)器學(xué)習(xí)再就業(yè)

驗(yàn)證安裝結(jié)果

  • 打開cmd,輸入以下命令:

    activatetensorflow

  • 再輸入:

    python

  • 再輸入:

    importtensorflow

沒有異常拋出就證明安裝成功了。

性能測試

因?yàn)槲业臋C(jī)器沒有核顯,平時除了P104還得再插一張顯卡。所以我又買了一塊2070Super官網(wǎng)顯示compute capability: 7.5。既然買了就跟這塊compute capability: 6.1的礦卡P104PK一下吧!

礦渣P104-100魔改8G,機(jī)器學(xué)習(xí)再就業(yè)

2070Super具體參數(shù)2070Super具體參數(shù)

下面開始進(jìn)行測試比較

統(tǒng)一運(yùn)行環(huán)境win10 ,cuda 10.0,tensorflow-gpu2.1,Anaconda3-2020.02-Windows,Python3.7.7

1、先跑一下tensorflow 網(wǎng)站的“Hello World”

2070 SUPER

I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] CreatedTensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6283 MBmemory) -> physical GPU (device: 0, name: GeForce RTX 2070 SUPER, pci busid: 0000:65:00.0, compute capability: 7.5)

Train on 60000 samples

  • Epoch 1/5

  • 60000/60000 [==============================] - 7s 117us/sample -loss: 0.2996 - accuracy: 0.9123

  • Epoch 2/5

  • 60000/60000 [==============================] - 6s 99us/sample -loss: 0.1448 - accuracy: 0.9569

  • Epoch 3/5

  • 60000/60000 [==============================] - 5s 85us/sample -loss: 0.1068 - accuracy: 0.9682

  • Epoch 4/5

  • 60000/60000 [==============================] - 6s 101us/sample -loss: 0.0867 - accuracy: 0.9727

  • Epoch 5/5

  • 60000/60000 [==============================] - 6s 96us/sample -loss: 0.0731 - accuracy: 0.9766

P104-100

I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] CreatedTensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7482 MBmemory) -> physical GPU (device: 0, name: P104-100, pci bus id:0000:07:00.0, compute capability: 6.1)

Train on 60000 samples

  • Epoch 1/5

  • 60000/60000 [==============================] - 4s 68us/sample -loss: 0.2957 - accuracy: 0.9143

  • Epoch 2/5

  • 60000/60000 [==============================] - 3s 56us/sample -loss: 0.1445 - accuracy: 0.9569

  • Epoch 3/5

  • 60000/60000 [==============================] - 3s 58us/sample -loss: 0.1087 - accuracy: 0.9668

  • Epoch 4/5

  • 60000/60000 [==============================] - 3s 57us/sample -loss: 0.0898 - accuracy: 0.9720

  • Epoch 5/5

  • 60000/60000 [==============================] - 3s 58us/sample -loss: 0.0751 - accuracy: 0.9764

P104運(yùn)行時使用7482 MB memory,2070 SUPER 使用6283 MB memory都是8G卡,可能2070 SUPER需要同時負(fù)責(zé)顯示畫面,所以需保留些顯存供使用。

對比測試一跑完我就哭了。P104每個Epoch用時3s 58,2070 SUPER每個Epoch用時幾乎7s。P104比2070 SUPER快了幾乎2S。我的2070 SUPER,白買了。我要去退掉。

2、接著跑Keras官方文檔內(nèi)的1DCNN for text classification

文檔顯示,本相測試對照耗時

90s/epochon Intel i5 2.4Ghz CPU.
10s/epoch on Tesla K40 GPU.

2070SUPER

  • Epoch 1/5

  • 25000/25000 [==============================] - 10s 418us/step -loss: 0.4080 - accuracy: 0.7949 - val_loss: 0.3058 - val_accuracy: 0.8718

  • Epoch 2/5

  • 25000/25000 [==============================] - 8s 338us/step - loss:0.2318 - accuracy: 0.9061 - val_loss: 0.2809 - val_accuracy: 0.8816

  • Epoch 3/5

  • 25000/25000 [==============================] - 9s 349us/step - loss:0.1663 - accuracy: 0.9359 - val_loss: 0.2596 - val_accuracy: 0.8936

  • Epoch 4/5

  • 25000/25000 [==============================] - 9s 341us/step - loss:0.1094 - accuracy: 0.9607 - val_loss: 0.3009 - val_accuracy: 0.8897

  • Epoch 5/5

  • 25000/25000 [==============================] - 9s 341us/step - loss:0.0752 - accuracy: 0.9736 - val_loss: 0.3365 - val_accuracy: 0.8871

P104-100

  • Epoch 1/5

  • 25000/25000 [==============================] - 8s 338us/step - loss:0.4059 - accuracy: 0.7972 - val_loss: 0.2898 - val_accuracy: 0.8772

  • Epoch 2/5

  • 25000/25000 [==============================] - 7s 285us/step - loss:0.2372 - accuracy: 0.9038 - val_loss: 0.2625 - val_accuracy: 0.8896

  • Epoch 3/5

  • 25000/25000 [==============================] - 7s 286us/step - loss:0.1665 - accuracy: 0.9357 - val_loss: 0.3274 - val_accuracy: 0.8701

  • Epoch 4/5

  • 25000/25000 [==============================] - 7s 286us/step - loss:0.1142 - accuracy: 0.9591 - val_loss: 0.3090 - val_accuracy: 0.8854

  • Epoch 5/5

  • 25000/25000 [==============================] - 7s 286us/step - loss:0.0728 - accuracy: 0.9747 - val_loss: 0.3560 - val_accuracy: 0.8843

還是礦卡P104最快,兩卡都比TeslaK40快。

3、最后測試Train an Auxiliary Classifier GAN (ACGAN) on the MNIST dataset.

網(wǎng)頁顯示運(yùn)行每epochs耗時,Hardware BackendTime/ Epoch

  • CPU TF 3hrs

  • Titan X (maxwell) TF 4min

  • Titan X(maxwell) TH 7 min

跑了5 epochs測試結(jié)果如下:

2070SUPER

  • Epoch 1/5

  • 600/600 [==============================] - 45s 75ms/step

  • Testing for epoch 1:

  • component | loss| generation_loss | auxiliary_loss

  • -----------------------------------------------------------------

  • generator (train) | 0.76| 0.4153 | 0.3464

  • generator (test) | 1.16| 1.0505 | 0.1067

  • discriminator (train) | 0.68| 0.2566 | 0.4189

  • discriminator (test) | 0.74| 0.5961 | 0.1414

  • Epoch 2/5

  • 600/600 [==============================] - 37s 62ms/step

  • Testing for epoch 2:

  • component | loss| generation_loss | auxiliary_loss

  • -----------------------------------------------------------------

  • generator (train) | 1.05| 0.9965 | 0.0501

  • generator (test) | 0.73| 0.7147 | 0.0117

  • discriminator (train) | 0.85| 0.6851 | 0.1644

  • discriminator (test) | 0.75| 0.6933 | 0.0553

  • Epoch 3/5

  • 600/600 [==============================] - 38s 64ms/step

  • Testing for epoch 3:

  • component | loss| generation_loss | auxiliary_loss

  • -----------------------------------------------------------------

  • generator (train) | 0.84| 0.8246 | 0.0174

  • generator (test) | 0.67| 0.6645 | 0.0030

  • discriminator (train) | 0.82| 0.7042 | 0.1158

  • discriminator (test) | 0.77| 0.7279 | 0.0374

  • Epoch 4/5

  • 600/600 [==============================] - 38s 63ms/step

  • Testing for epoch 4:

  • component | loss| generation_loss | auxiliary_loss

  • -----------------------------------------------------------------

  • generator (train) | 0.81| 0.7989 | 0.0107

  • generator (test) | 0.66| 0.6604 | 0.0026

  • discriminator (train) | 0.80| 0.7068 | 0.0938

  • discriminator (test) | 0.74| 0.7047 | 0.0303

  • Epoch 5/5

  • 600/600 [==============================] - 38s 64ms/step

  • Testing for epoch 5:

  • component | loss| generation_loss | auxiliary_loss

  • -----------------------------------------------------------------

  • generator (train) | 0.80| 0.7890 | 0.0083

  • generator (test) | 0.64| 0.6388 | 0.0021

  • discriminator (train) | 0.79| 0.7049 | 0.0807

  • discriminator (test) | 0.73| 0.7056 | 0.0266

P104-100

  • Epoch 1/5

  • 600/600 [==============================] - 63s 105ms/step

  • Testing for epoch 1:

  • component | loss| generation_loss | auxiliary_loss

  • -----------------------------------------------------------------

  • generator (train) | 0.79| 0.4320 | 0.3590

  • generator (test) | 0.88| 0.8000 | 0.0802

  • discriminator (train) | 0.68| 0.2604 | 0.4182

  • discriminator (test) | 0.72| 0.5822 | 0.1380

  • Epoch 2/5

  • 600/600 [==============================] - 59s 98ms/step

  • Testing for epoch 2:

  • component | loss| generation_loss | auxiliary_loss

  • -----------------------------------------------------------------

  • generator (train) | 1.02| 0.9747 | 0.0450

  • generator (test) | 0.79| 0.7753 | 0.0165

  • discriminator (train) | 0.85| 0.6859 | 0.1629

  • discriminator (test) | 0.77| 0.7168 | 0.0576

  • Epoch 3/5

  • 600/600 [==============================] - 59s 98ms/step

  • Testing for epoch 3:

  • component | loss| generation_loss | auxiliary_loss

  • -----------------------------------------------------------------

  • generator (train) | 0.84| 0.8263 | 0.0170

  • generator (test) | 0.64| 0.6360 | 0.0042

  • discriminator (train) | 0.82| 0.7062 | 0.1157

  • discriminator (test) | 0.77| 0.7353 | 0.0384

  • Epoch 4/5

  • 600/600 [==============================] - 58s 97ms/step

  • Testing for epoch 4:

  • component | loss| generation_loss | auxiliary_loss

  • -----------------------------------------------------------------

  • generator (train) | 0.82| 0.8036 | 0.0115

  • generator (test) | 0.69| 0.6850 | 0.0019

  • discriminator (train) | 0.80| 0.7054 | 0.0933

  • discriminator (test) | 0.75| 0.7165 | 0.0301

  • Epoch 5/5

  • 600/600 [==============================] - 58s 97ms/step

  • Testing for epoch 5:

  • component | loss| generation_loss | auxiliary_loss

  • -----------------------------------------------------------------

  • generator (train) | 0.80| 0.7904 | 0.0087

  • generator (test) | 0.64| 0.6400 | 0.0028

  • discriminator (train) | 0.79| 0.7046 | 0.0806

  • discriminator (test) | 0.74| 0.7152 | 0.0272

這回2070SUPER終于耗時比P104-100少了。這張新卡暫時不用退了。

總結(jié)

如果個人學(xué)習(xí)使用,礦卡P104-100魔改8G版本性價(jià)比不錯,可以購買。

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多