|
在前面的文章里,我們已經(jīng)介紹了關(guān)于等腰三角形和直角三角形存在性問(wèn)題的一般解決方法和常見(jiàn)題型,本文繼續(xù)介紹——平行四邊形存在性問(wèn)題. 01 坐標(biāo)系中的平行四邊形 考慮到求證平行四邊形存在,必先了解平行四邊形性質(zhì): (1)對(duì)應(yīng)邊平行且相等; (2)對(duì)角線(xiàn)互相平分. 這是圖形的性質(zhì),我們現(xiàn)在需要的是將其性質(zhì)運(yùn)用在在坐標(biāo)系中: (1)對(duì)邊平行且相等可轉(zhuǎn)化為: 可以理解為點(diǎn)B移動(dòng)到點(diǎn)A,點(diǎn)C移動(dòng)到點(diǎn)D,移動(dòng)路徑完全相同. (2)對(duì)角線(xiàn)互相平分轉(zhuǎn)化為: 可以理解為AC的中點(diǎn)也是BD的中點(diǎn). 【小結(jié)】雖然由兩個(gè)性質(zhì)推得的式子并不一樣,但其實(shí)可以化為統(tǒng)一: 當(dāng)AC和BD為對(duì)角線(xiàn)時(shí),結(jié)果可簡(jiǎn)記為:A+C=B+D(各個(gè)點(diǎn)對(duì)應(yīng)的橫縱坐標(biāo)相加) 以上是對(duì)于平行四邊形性質(zhì)的分析,而我們要求證的是平行四邊形存在性問(wèn)題,此處當(dāng)有一問(wèn):若坐標(biāo)系中的4個(gè)點(diǎn)A、B、C、D滿(mǎn)足“A+C=B+D”,則四邊形ABCD是否一定為平行四邊形? 反例如下: 之所以存在反例是因?yàn)椤八倪呅蜛BCD是平行四邊形”與“AC、BD中點(diǎn)是同一個(gè)點(diǎn)”并不是完全等價(jià)的轉(zhuǎn)化,故存在反例. 雖有反例,但并不影響運(yùn)用此結(jié)論解題,在拋物線(xiàn)條件下的平四存在性基本不會(huì)出現(xiàn)共線(xiàn)的情況.另外,還需注意對(duì)對(duì)角線(xiàn)的討論: (1)四邊形ABCD是平行四邊形:AC、BD一定是對(duì)角線(xiàn). (2)以A、B、C、D四個(gè)點(diǎn)為頂點(diǎn)是四邊形是平行四邊形:對(duì)角線(xiàn)不確定需要分類(lèi)討論. 02 兩類(lèi)題型 平行四邊形存在性問(wèn)題通常可分為“三定一動(dòng)”和“兩定兩動(dòng)”兩大類(lèi)問(wèn)題. 三定一動(dòng) 引例:已知A(1,2)、B(5,3)、C(3,5),在坐標(biāo)系內(nèi)確定點(diǎn)D使得以A、B、C、D四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形. ················································································ 兩定兩動(dòng) 引例:已知A(1,1)、B(3,2),點(diǎn)C在x軸上,點(diǎn)D在y軸上,且以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,求C、D坐標(biāo).
················································································ 03 動(dòng)點(diǎn)概述 “三定一動(dòng)”的動(dòng)點(diǎn)和“兩定兩動(dòng)”的動(dòng)點(diǎn)性質(zhì)并不完全一樣,“三定一動(dòng)”中動(dòng)點(diǎn)是在平面中,橫縱坐標(biāo)都不確定,需要用兩個(gè)字母表示,這樣的我們姑且稱(chēng)為“全動(dòng)點(diǎn)”,而有一些動(dòng)點(diǎn)在坐標(biāo)軸或者直線(xiàn)或者拋物線(xiàn)上,用一個(gè)字母即可表示點(diǎn)坐標(biāo),稱(chēng)為“半動(dòng)點(diǎn)”. 從上面例子可以看出,雖然動(dòng)點(diǎn)數(shù)量不同,但本質(zhì)都是在用兩個(gè)字母表示出4個(gè)點(diǎn)坐標(biāo).若把一個(gè)字母稱(chēng)為一個(gè)“未知量”也可理解為:全動(dòng)點(diǎn)未知量=半動(dòng)點(diǎn)未知量×2. 找不同圖形的存在性最多可以有幾個(gè)未知量,都是根據(jù)圖形決定的,像平行四邊形,只能有2個(gè)未知量.究其原因,在于平行四邊形兩大性質(zhì): (1)對(duì)邊平行且相等; (2)對(duì)角線(xiàn)互相平分. 但此兩個(gè)性質(zhì)統(tǒng)一成一個(gè)等式:
兩個(gè)等式,只能允許最多存在兩個(gè)未知數(shù),即我們剛剛所講的平行四邊形存在性問(wèn)題最多只能存在2個(gè)未知量. 由圖形性質(zhì)可知未知量,由未知量可知?jiǎng)狱c(diǎn)設(shè)計(jì),由動(dòng)點(diǎn)設(shè)計(jì)可化解問(wèn)題. 04 以確定邊、對(duì)角線(xiàn)為前提 有一類(lèi)問(wèn)題中,根據(jù)題目給的條件可判斷某條線(xiàn)段為邊或者對(duì)角線(xiàn),若某線(xiàn)段為邊,則可通過(guò)構(gòu)造對(duì)邊平行且相等解決問(wèn)題.若某線(xiàn)段為對(duì)角線(xiàn),則可通過(guò)構(gòu)造對(duì)角線(xiàn)互相平分解決問(wèn)題. 2019宜賓中考 【已知邊平行,構(gòu)造相等】 如圖,在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)y=ax2-2x+c與直線(xiàn)y=kx+b都經(jīng)過(guò)A(0,-3)、B(3,0)兩點(diǎn),該拋物線(xiàn)的頂點(diǎn)為C. (1)求此拋物線(xiàn)和直線(xiàn)AB的解析式; (2)設(shè)直線(xiàn)AB與該拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)E,在射線(xiàn)EB上是否存在一點(diǎn)M,過(guò)M作x軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn)N,使點(diǎn)M、N、C、E是平行四邊形的四個(gè)頂點(diǎn)?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由; (3)設(shè)點(diǎn)P是直線(xiàn)AB下方拋物線(xiàn)上的一動(dòng)點(diǎn),當(dāng)△PAB面積最大時(shí),求點(diǎn)P的坐標(biāo),并求△PAB面積的最大值.
················································································ 2018河南中考刪減 【已知邊平行,構(gòu)造相等】 如圖,拋物線(xiàn)y=ax2+6x+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線(xiàn)y=x-5經(jīng)過(guò)點(diǎn)B、C. (1)求拋物線(xiàn)的解析式; (2)過(guò)點(diǎn)A的直線(xiàn)交直線(xiàn)BC于點(diǎn)M.當(dāng)AM⊥BC時(shí),過(guò)拋物線(xiàn)上一動(dòng)點(diǎn)P(不與點(diǎn)B,C重合),作直線(xiàn)AM的平行線(xiàn)交直線(xiàn)BC于點(diǎn)Q,若以點(diǎn)A,M,P,Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的橫坐標(biāo).
················································································ 2018郴州中考刪減 【已知對(duì)角線(xiàn),構(gòu)造平分】 如圖,已知拋物線(xiàn)y=-x2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線(xiàn)上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t. (1)求拋物線(xiàn)的表達(dá)式; (2)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸為l,l與x軸的交點(diǎn)為D.在直線(xiàn)l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
················································································ 05 關(guān)于動(dòng)點(diǎn)的討論 大部分平行四邊形存在性問(wèn)題還是需要我們?nèi)シ诸?lèi)討論探索動(dòng)點(diǎn)位置,有的時(shí)候看圖并不一定能準(zhǔn)確找出所求可能存在的動(dòng)點(diǎn),所以根據(jù)點(diǎn)坐標(biāo)滿(mǎn)足的條件列方程計(jì)算,不失為一種簡(jiǎn)潔的方法. 2018恩施中考刪減 【三定一動(dòng)】 如圖,已知拋物線(xiàn)交x軸于A、B兩點(diǎn),交y軸于C點(diǎn),A點(diǎn)坐標(biāo)為(-1,0),OC=2,OB=3,點(diǎn)D為拋物線(xiàn)的頂點(diǎn). (1)求拋物線(xiàn)的解析式; (2)P為坐標(biāo)平面內(nèi)一點(diǎn),以B、C、D、P為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)坐標(biāo).
················································································ 2018濟(jì)寧中考刪減 【兩定兩動(dòng):x軸+拋物線(xiàn)】 如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)A(3,0),B(-1,0),C(0,-3). (1)求該拋物線(xiàn)的解析式; (2)若點(diǎn)Q在x軸上,點(diǎn)P在拋物線(xiàn)上,是否存在以點(diǎn)B,C,Q,P為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
················································································ 2019包頭中考刪減 【兩定兩動(dòng):對(duì)稱(chēng)軸+拋物線(xiàn)】 如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)y=ax2+bx+2(a≠0)與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,連接BC. (1)求該拋物線(xiàn)的解析式,并寫(xiě)出它的對(duì)稱(chēng)軸; (2)若點(diǎn)N為拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),拋物線(xiàn)上是否存在點(diǎn)M,使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
················································································ 2019咸寧中考刪減 【兩定兩動(dòng):直線(xiàn)+拋物線(xiàn)】 如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=-1/2x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線(xiàn)y=-1/2x2+bx+c經(jīng)過(guò)A,B兩點(diǎn)且與x軸的負(fù)半軸交于點(diǎn)C. (1)求該拋物線(xiàn)的解析式; (2)已知E、F分別是直線(xiàn)AB和拋物線(xiàn)上的動(dòng)點(diǎn),當(dāng)B,O,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫(xiě)出所有符合條件的E點(diǎn)的坐標(biāo).
················································································ 2019連云港中考刪減 【兩定兩動(dòng):拋物線(xiàn)+拋物線(xiàn)】 如圖,在平面直角坐標(biāo)系xOy中,拋物線(xiàn)L1:y=x2+bx+c過(guò)點(diǎn)C(0.-3),與拋物線(xiàn)L2:y=-1/2x2-3/2x+2的一個(gè)交點(diǎn)為A,且點(diǎn)A的橫坐標(biāo)為2,點(diǎn)P、Q分別是拋物線(xiàn)L1、L2上的動(dòng)點(diǎn). (1)求拋物線(xiàn)L1對(duì)應(yīng)的函數(shù)表達(dá)式; (2)若以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形恰為平行四邊形,求出點(diǎn)P的坐標(biāo).
················································································ 2019錦州中考刪減 【4動(dòng)點(diǎn)構(gòu)造】 如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=-3/4x+3的圖像與x軸交于點(diǎn)A,與y軸交于B點(diǎn),拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),在第一象限的拋物線(xiàn)上取一點(diǎn)D,過(guò)點(diǎn)D作DC⊥x軸于點(diǎn)C,交直線(xiàn)AB于點(diǎn)E. (1)求拋物線(xiàn)的函數(shù)表達(dá)式 (2)F是第一象限內(nèi)拋物線(xiàn)上的動(dòng)點(diǎn)(不與點(diǎn)D重合),點(diǎn)G是線(xiàn)段AB上的動(dòng)點(diǎn).連接DF,F(xiàn)G,當(dāng)四邊形DEGF是平行四邊形且周長(zhǎng)最大時(shí),請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo).
················································································ 見(jiàn)識(shí)了這么多平四存在性問(wèn)題,不難發(fā)現(xiàn),對(duì)于常規(guī)題,動(dòng)點(diǎn)最多也就兩個(gè),不管是在坐標(biāo)軸上還是直線(xiàn)、拋物線(xiàn)上,總是能夠用字母表示出來(lái),表示出了點(diǎn)坐標(biāo),接下來(lái)就是計(jì)算的故事了~ |
|
|
來(lái)自: 昵稱(chēng)32937624 > 《待分類(lèi)》