|
整式的乘法與因式分解 知識(shí)結(jié)構(gòu)圖: 一、整式的有關(guān)概念 1.整式 整式是單項(xiàng)式與多項(xiàng)式的統(tǒng)稱(chēng). 2.單項(xiàng)式 單項(xiàng)式是指由數(shù)字或字母的乘積組成的式子;單項(xiàng)式中的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù);單項(xiàng)式中所有字母指數(shù)的和叫做單項(xiàng)式的次數(shù). 3.多項(xiàng)式 幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式;多項(xiàng)式中,每一個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),其中不含字母的項(xiàng)叫做常數(shù)項(xiàng);多項(xiàng)式中次數(shù)最高項(xiàng)的次數(shù)就是這個(gè)多項(xiàng)式的次數(shù). 二、整數(shù)指數(shù)冪的運(yùn)算 1、同底數(shù)冪乘法:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。 2、同底數(shù)冪除法:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。 3、冪的乘方:冪的乘方,底數(shù)不變,指數(shù)相乘。 4、積的乘方:積的乘方等于各因式乘方的積。 注:(1)任何一個(gè)不等于零的數(shù)的零指數(shù)冪都等于1; (2)任何一個(gè)不等于零的數(shù)的-p(p為正整數(shù))指數(shù)冪, 等于這個(gè)數(shù)的p指數(shù)冪的倒數(shù)。 (3)科學(xué)記數(shù)法: 絕對(duì)值小于1的數(shù)可記成 三、同類(lèi)項(xiàng)與合并同類(lèi)項(xiàng) 1.所含字母相同,并且相同字母的指數(shù)也分別相同的單項(xiàng)式叫做同類(lèi)項(xiàng). 2.把多項(xiàng)式中的同類(lèi)項(xiàng)合并成一項(xiàng)叫做合并同類(lèi)項(xiàng),合并的法則是系數(shù)相加,所得的結(jié)果作為合并后的系數(shù),字母和字母的指數(shù)不變. 四、求代數(shù)式的值 1.一般地,用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式指明的運(yùn)算關(guān)系計(jì)算出的結(jié)果就叫做代數(shù)式的值. 2.求代數(shù)式的值的基本步驟: (1)代入:一般情況下,先對(duì)代數(shù)式進(jìn)行化簡(jiǎn),再將數(shù)值代入; (2)計(jì)算:按代數(shù)式指明的運(yùn)算關(guān)系計(jì)算出結(jié)果. 五、整式的運(yùn)算 1.整式的加減 (1)整式的加減實(shí)質(zhì)就是合并同類(lèi)項(xiàng); (2)整式加減的步驟:有括號(hào),先去括號(hào);有同類(lèi)項(xiàng),再合并同類(lèi)項(xiàng).注意去括號(hào)時(shí),如果括號(hào)前面是負(fù)號(hào),括號(hào)里各項(xiàng)的符號(hào)要變號(hào). 2.整式的乘除 (1)整式的乘法 ①單項(xiàng)式與單項(xiàng)式相乘:把系數(shù)、同底數(shù)冪分別相乘,作為積的因式,只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式. ②單項(xiàng)式與多項(xiàng)式相乘:m(a+b+c)=ma+mb+mc. ③多項(xiàng)式與多項(xiàng)式相乘:(m+n)(a+b)=ma+mb+na+nb. (2)整式的除法 ①單項(xiàng)式除以單項(xiàng)式:把系數(shù)、同底數(shù)冪相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式. ②多項(xiàng)式除以單項(xiàng)式:(a+b)÷m=a÷m+b÷m. 3.乘法公式 (1)平方差公式:(a+b)(a-b)=a2-b2; (2)完全平方公式:(a±b)2=a2±2ab+b2. 六、因式分解 1.因式分解的概念 把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做多項(xiàng)式的因式分解. 2.因式分解的方法 (1)提公因式法 公因式的確定:第一,確定系數(shù)(取各項(xiàng)整數(shù)系數(shù)的最大公約數(shù));第二,確定字母或因式底數(shù)(取各項(xiàng)的相同字母);第三,確定字母或因式的指數(shù)(取各相同字母的最低次冪). (2)運(yùn)用公式法 ①運(yùn)用平方差公式: ②運(yùn)用完全平方公式: (3)十字相乘: 3.分解因式的技巧: (1) 因式分解時(shí),有公因式要先提公因式,然后考慮其他方法; (2)因式分解時(shí),有時(shí)項(xiàng)數(shù)較多時(shí),看看分組分解法是否更簡(jiǎn)潔.
典例1:計(jì)算 A.x B. 典例2:下列算式中:①
練習(xí):已知3x+5y=8,求 解: 典例3:計(jì)算: (1) 解:原式= (2) 解:原式= 典例4:化簡(jiǎn)求值: 解:原式=-(8a+5b)(4a+b)=-77. 練習(xí):1.計(jì)算:(1) 解:原式= (2)(x+7)(x-3). 解:原式= 2.先化簡(jiǎn),再求值:(a+2)(a-2)+a(1-a),其中a=5. 解:原式= 當(dāng)a=5時(shí),原式=5-4=1. 典例5:分解因式: (1) 解:原式= (2) 解:原式= (3) 解:原式=
練習(xí):分解因式: (1) 解:原式=
(2) 解:原式=
典例6:若△ABC的三邊長(zhǎng)為a、b、c,且滿足 解:∵ |
|
|
來(lái)自: 家有學(xué)子 > 《數(shù)學(xué)》