| 前面講過(guò)荷電狀態(tài)(SOC)估計(jì)是一個(gè)重要功能,這里就詳細(xì)介紹一下SOC功能和實(shí)現(xiàn)方法。 SOC(Stateof Charge),可用電量占據(jù)電池最大可用容量的比例,通常以百分比表示,100%表示完全充電,0%表示完全放電。這是針對(duì)單個(gè)電池的定義,對(duì)于電池模塊(或電池組,由于電池組由多個(gè)模塊組成,因此從模塊SOC計(jì)算電池組的SOC就像電池電池單體SOC估計(jì)模塊SOC一樣),情況有一點(diǎn)復(fù)雜。在SOC估計(jì)方法的最后一節(jié)討論。 目前,對(duì)SOC 的研究已經(jīng)基本成熟,SOC 算法主要分為兩大類,一類為單一SOC 算法,另一類為多種單一SOC 算法的融合算法。 單一SOC 算法包括安時(shí)積分法、開(kāi)路電壓法、基于電池模型估計(jì)的開(kāi)路電壓法、其他基于電池性能的SOC估計(jì)法等。融合算法包括簡(jiǎn)單的修正、加權(quán)、卡爾曼濾波(或擴(kuò)展卡爾曼濾波)以及滑模變結(jié)構(gòu)方法等。 1)放電測(cè)試方法 確定電池SOC的最可靠方法是在受控條件下進(jìn)行放電測(cè)試,即指定的放電速率和環(huán)境溫度。這個(gè)測(cè)試可以準(zhǔn)確的計(jì)算電池的剩余電量SOC,但所消耗的時(shí)間相當(dāng)長(zhǎng),并且在測(cè)試完畢以后電池里面的電量全部放掉,因此這個(gè)方法只在實(shí)驗(yàn)室中用來(lái)標(biāo)定驗(yàn)證電池的標(biāo)稱容量,無(wú)法用于設(shè)計(jì)BMS做車輛電池電量的在線估計(jì)。 2)安時(shí)積分法 安時(shí)積分計(jì)算方法為: 上式中,SOC 為荷電狀態(tài);SOC0為起始時(shí)刻(t0)的荷電狀態(tài);CN為額定容量(為電池當(dāng)時(shí)標(biāo)準(zhǔn)狀態(tài)下的容量,隨壽命變化);η為庫(kù)侖效率,放電為1,充電小于1;I 為電流,充電為負(fù),放電為正。在起始荷電狀態(tài)SOC0比較準(zhǔn)確情況下,安時(shí)積分法在一段時(shí)間內(nèi)具有相當(dāng)好的精度(主要與電流傳感器采樣精度、采樣頻率有關(guān))。 但是,安時(shí)積分法的主要缺點(diǎn)為:起始SOC0影響荷電狀態(tài)的估計(jì)精度;庫(kù)侖效率η受電池的工作狀態(tài)影響大(如荷電狀態(tài)、溫度、電流大小等),η難于準(zhǔn)確測(cè)量,會(huì)對(duì)荷電狀態(tài)誤差有累積效應(yīng);電流傳感器精度,特別是偏差會(huì)導(dǎo)致累計(jì)效應(yīng),影響荷電狀態(tài)的精度。因此,單純采用安時(shí)積分法很難滿足荷電狀態(tài)估計(jì)的精度要求。 3)開(kāi)路電壓(OCV)法 鋰離子電池的荷電狀態(tài)與鋰離子在活性材料中的嵌入量有關(guān),與靜態(tài)熱力學(xué)有關(guān),因此充分靜置后的開(kāi)路電壓可以認(rèn)為達(dá)到平衡電動(dòng)勢(shì),OCV與荷電狀態(tài)具有一一對(duì)應(yīng)的關(guān)系,是估計(jì)荷電狀態(tài)的有效方法。 但是有些種類電池的OCV與充放電過(guò)程(歷史)有關(guān),如LiFePO4/C電池,充電OCV與放電OCV 具有滯回現(xiàn)象(與鎳氫電池類似),并且電壓曲線平坦,因而SOC估計(jì)精度受到傳感器精度的影響嚴(yán)重,這些都需要進(jìn)一步研究。 開(kāi)路電壓法最大的優(yōu)點(diǎn)是荷電狀態(tài)估計(jì)精度高,但是它的顯著缺點(diǎn)是需要將電池長(zhǎng)時(shí)靜置以達(dá)到平衡,電池從工作狀態(tài)恢復(fù)到平衡狀態(tài)一般需要一定時(shí)間,與荷電狀態(tài)、溫度等狀態(tài)有關(guān),低溫下需要數(shù)小時(shí)以上,所以該方法單獨(dú)使用只適于電動(dòng)汽車駐車狀態(tài),不適合動(dòng)態(tài)估計(jì)。 4)基于電池模型的開(kāi)路電壓法 通過(guò)電池模型可以估計(jì)電池的開(kāi)路電壓,再根據(jù)OCV與SOC 的對(duì)應(yīng)關(guān)系可以估計(jì)當(dāng)前電池的SOC。等效電路模型是最常用的電池模型。對(duì)于這種方法,電池模型的精度和復(fù)雜性非常重要。華等人收集了12個(gè)常用等效電路模型,包括組合模型,Rint模型(簡(jiǎn)單模型),具有零狀態(tài)滯后模型的Rint模型,具有單態(tài)滯后模型的Rint模型,具有兩個(gè)低通濾波器增強(qiáng)型自校正(ESC)模型,具有四個(gè)低通濾波器的ESC模型,一階RC模型,一個(gè)狀態(tài)滯后的一階RC模型,二階RC模型,具有單態(tài)滯后的二階RC模型,三階RC模型和具有單態(tài)滯后的三階RC模型。 電化學(xué)模型是建立在傳質(zhì)、化學(xué)熱力學(xué)、動(dòng)力學(xué)基礎(chǔ)上,涉及電池內(nèi)部材料的參數(shù)較多,而且很難準(zhǔn)確獲得,模型運(yùn)算量大,一般用于電池的性能分析與設(shè)計(jì)。 如果電池模型參數(shù)已知,則很容易找到電池OCV。然后使用通過(guò)實(shí)驗(yàn)得出的OCV-SOC查找表,可以容易地找到電池SOC。研究人員使用這種方法,并分別采取RINT模型,一階RC,二階RC模型,發(fā)現(xiàn)使用二階RC模型的最大估計(jì)誤差是4.3%,而平均誤差是1.4%。 上圖是充放電C/的LiFePO的OCV曲線4(在25℃測(cè)量,休息時(shí)間3小時(shí)) 5)神經(jīng)網(wǎng)絡(luò)模型方法 神經(jīng)網(wǎng)絡(luò)模型法估計(jì)SOC是利用神經(jīng)網(wǎng)絡(luò)的非線性映射特性,在建立模型時(shí)不用具體考慮電池的細(xì)節(jié)問(wèn)題,方法具有普適性,適用于各種電池的SOC估計(jì),但是需要大量樣本數(shù)據(jù)對(duì)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,且估算誤差受訓(xùn)練數(shù)據(jù)和訓(xùn)練方法的影響很大,且神經(jīng)網(wǎng)絡(luò)法運(yùn)算量大,需要強(qiáng)大的運(yùn)算芯片(如DSP等)。 6)模糊邏輯方法 模糊邏輯法基本思路就是根據(jù)大量試驗(yàn)曲線、經(jīng)驗(yàn)及可靠的模糊邏輯理論依據(jù),用模糊邏輯模擬人的模糊思維,最終實(shí)現(xiàn)SOC預(yù)測(cè),但該算法首先需要對(duì)電池本身有足夠多的了解,計(jì)算量也較大。 7)基于電池性能的SOC 估計(jì)法 基于電池性能的SOC估計(jì)方法包括交流阻抗法、直流內(nèi)阻法和放電試驗(yàn)法。交流阻抗法是通過(guò)對(duì)交流阻抗譜與SOC 的關(guān)系進(jìn)行SOC估計(jì)。直流內(nèi)阻法通過(guò)直流內(nèi)阻與電池SOC 的關(guān)系進(jìn)行估計(jì)。 交流阻抗及直流內(nèi)阻一般僅用于電池離線診斷,很難直接應(yīng)用在車用SOC實(shí)時(shí)估計(jì)中,這是因?yàn)?,采用交流阻抗的方法需要有信?hào)發(fā)生器,會(huì)增加成本;電池阻抗譜或內(nèi)阻與SOC 關(guān)系復(fù)雜,影響因素多(包括內(nèi)阻一致性);電池內(nèi)阻很小,車用電池在毫歐級(jí),很難準(zhǔn)確獲得;鋰離子電池內(nèi)阻在很寬范圍內(nèi)變化較小,很難識(shí)別。 關(guān)于BMS的基礎(chǔ)知識(shí),請(qǐng)參考前文: 動(dòng)力電池管理系統(tǒng)(BMS)基礎(chǔ)(一); 動(dòng)力電池管理系統(tǒng)(BMS)基礎(chǔ)(二); 動(dòng)力電池管理系統(tǒng)(BMS)基礎(chǔ)(三); | 
|  |