|
典型例題分析1: 如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣3/2與x軸交于A(1,0),B(﹣3,0)兩點(diǎn),現(xiàn)有經(jīng)過點(diǎn)A的直線l:y=kx+b1與y軸交于點(diǎn)C,與拋物線的另個交點(diǎn)為D. (1)求拋物線的函數(shù)表達(dá)式; (2)若點(diǎn)D在第二象限且滿足CD=5AC,求此時直線1的解析式;在此條件下,點(diǎn)E為直線1下方拋物線上的一點(diǎn),求△ACE面積的最大值,并求出此時點(diǎn)E的坐標(biāo); (3)如圖,設(shè)P在拋物線的對稱軸上,且在第二象限,到x軸的距離為4,點(diǎn)Q在拋物線上,若以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請直接寫出點(diǎn)Q的坐標(biāo);若不能,請說明理由. 



 如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點(diǎn)A(﹣1,0)、B(3,0)、點(diǎn)C三點(diǎn).(2)點(diǎn)D(2,m)在第一象限的拋物線上,連接BC、BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點(diǎn)P,滿足∠PBC=∠DBC?如果存在,請求出點(diǎn)P點(diǎn)的坐標(biāo);如果不存在,請說明理由;(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個單位長度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設(shè)平移的時間為t秒,試求S與t之間的函數(shù)關(guān)系式?



 (1)將點(diǎn)A、B代入拋物線解析式,求出a、b值即可得到拋物線解析式;(2)根據(jù)已知求出點(diǎn)D的坐標(biāo),在y軸上取點(diǎn)G,使GC=CD=2,只要證明證明△CDB≌△CGB,可知∠PBC=∠DBC,寫出直線BP解析式,聯(lián)立二次函數(shù)解析式,求出點(diǎn)P坐標(biāo);(3)分兩種情況,第一種情況重疊部分為四邊形,利用大三角形減去兩個小三角形求得解析式,第二種情況重疊部分為三角形,可利用三角形面積公式求得.
|