|
# coding: utf-8 # pylint: disable = invalid-name, C0111 import json import lightgbm as lgb import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.datasets import make_classification iris = load_iris() data=iris.data target = iris.target X_train,X_test,y_train,y_test =train_test_split(data,target,test_size=0.2) # 加載你的數(shù)據(jù) # print('Load data...') # df_train = pd.read_csv('../regression/regression.train', header=None, sep='\t') # df_test = pd.read_csv('../regression/regression.test', header=None, sep='\t') # # y_train = df_train[0].values # y_test = df_test[0].values # X_train = df_train.drop(0, axis=1).values # X_test = df_test.drop(0, axis=1).values # 創(chuàng)建成lgb特征的數(shù)據(jù)集格式 lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # 將參數(shù)寫成字典下形式 params = { 'task': 'train', 'boosting_type': 'gbdt', # 設(shè)置提升類型 'objective': 'regression', # 目標(biāo)函數(shù) 'metric': {'l2', 'auc'}, # 評估函數(shù) 'num_leaves': 31, # 葉子節(jié)點數(shù) 'learning_rate': 0.05, # 學(xué)習(xí)速率 'feature_fraction': 0.9, # 建樹的特征選擇比例 'bagging_fraction': 0.8, # 建樹的樣本采樣比例 'bagging_freq': 5, # k 意味著每 k 次迭代執(zhí)行bagging 'verbose': 1 # <0 顯示致命的, =0 顯示錯誤 (警告), >0 顯示信息 } print('Start training...') # 訓(xùn)練 cv and train gbm = lgb.train(params,lgb_train,num_boost_round=20,valid_sets=lgb_eval,early_stopping_rounds=5) print('Save model...') # 保存模型到文件 gbm.save_model('model.txt') print('Start predicting...') # 預(yù)測數(shù)據(jù)集 y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) # 評估模型 print('The rmse of prediction is:', mean_squared_error(y_test, y_pred) ** 0.5) 快把你的結(jié)果在評論區(qū)里亮出來吧! |
|
|