小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

Centos7下安裝部署MXNET

 LibraryPKU 2019-03-27

Centos下安裝MXNET,參考官方文檔http:///get_started/setup.html#prerequisites,

一、安裝python的mxnet步驟如下:

復制代碼
#!/usr/bin/env bash
######################################################################
# This script installs MXNet for Python along with all required dependencies on a Fedora Machine.
# Tested on Fedora 21.0 + distro.
######################################################################
set -e

MXNET_HOME="$HOME/mxnet/"
echo "MXNet root folder: $MXNET_HOME"

echo "Installing basic development tools, atlas, opencv, pip, graphviz ..."
sudo yum update
sudo yum groupinstall -y "Development Tools" "Development Libraries"
sudo yum install -y atlas atlas-devel opencv opencv-devel graphviz graphviz-devel

echo "Building MXNet core. This can take few minutes..."
cd "$MXNET_HOME"
make -j$(nproc)

echo "Installing Numpy..."
sudo yum install numpy

echo "Installing Python setuptools..."
sudo yum install -y python-setuptools python-pip

echo "Adding MXNet path to your ~/.bashrc file"         
echo "export PYTHONPATH=$MXNET_HOME/python:$PYTHONPATH" >> ~/.bashrc
source ~/.bashrc

echo "Install Graphviz for plotting MXNet network graph..."
sudo pip install graphviz

echo "Installing Jupyter notebook..."
sudo pip install jupyter

echo "Done! MXNet for Python installation is complete. Go ahead and explore MXNet with Python :-)"
復制代碼

測試下是否安裝成功:

>>> import mxnet as mx
>>> 

ok,成功!

1 error解決:

1.1 安裝opencv需要注意的地方:

1)、如果停在了下載ippicv的地方,可以自行下載ippicv_linux_20151201.tgz(鏈接:http://www./blfs/view/7.9/general/opencv.html),

然后將剛才下載的ippicv文件直接拷貝進入opencv源碼的下面這個目錄:3rdparty/ippicv/downloads/linux-808b791a6eac9ed78d32a7666804320e

2)、錯誤:/usr/bin/ld: /usr/local/include/../lib/libswscale.a(swscale.o): relocation R_X86_64_PC32 against symbol `ff_M24A' can not be used when making a shared object; recompile with -fPIC

需要使用PIC選項重新編譯ffmpeg: CFLAGS="-O3 -fPIC" ./configure --enable-nonfree --enable-pic --enable-shared

若ffmpeg正常安裝后執(zhí)行ffmpeg時出現(xiàn)如下錯誤:ffmpeg: error while loading shared libraries: libavdevice.so.57: cannot open shared object file: No such file or directory

則 vim /etc/ld.so.conf
加入:/usr/local/lib
執(zhí)行 ldconfig

 如果上面的方法都失敗,那么需要如下處理:將FFmpeg靜態(tài)庫更改為使用動態(tài):

sed -i -e 's/libavformat\.a/libavformat.so/g'       -e 's/libavutil\.a/libavutil.so/g'       -e 's/libswscale\.a/libswscale.so/g'       -e 's/libavresample\.a/libavresample.so/g'       -e 's/libavcodec\.a/libavcodec.so/g'       cmake/OpenCVFindLibsVideo.cmake

然后:

cmake -D BUILD_opencv_gpu=OFF -D WITH_EIGEN=ON -D WITH_TBB=ON -D WITH_CUDA=OFF -D WITH_TIFF=OFF -DWITH_IPP=OFF -D WITH_1394=OFF -D CMAKE_BUILD_TYPE=RELEASE -DWITH_FFMPEG=ON -DWITH_GSTREAMER=OFF -D CMAKE_INSTALL_PREFIX=/usr/local
..
sudo make PREFIX=/usr/local install

 1.2 安裝nnvm錯誤解決

1)如果出現(xiàn)這個錯誤:/usr/bin/ld: cannot find -lcblas

cd /usr/lib64
ln -s libcblas.so.3 libcblas.so

二、安裝R包mxnet

復制代碼
#!/usr/bin/env bash
######################################################################
# This script installs MXNet for R along with all required dependencies on a Ubuntu Machine.
# We recommend to install Microsoft RServer together with Intel MKL library for optimal performance
# More information can be found here:
# https://blogs.technet.microsoft.com/machinelearning/2016/09/15/building-deep-neural-networks-in-the-cloud-with-azure-gpu-vms-mxnet-and-microsoft-r-server/
# Tested on Ubuntu 14.04+ distro.
######################################################################
set -e

MXNET_HOME="$HOME/mxnet/"
echo "MXNet root folder: $MXNET_HOME"

echo "Building MXNet core. This can take few minutes..."
cd "$MXNET_HOME"
make -j$(nproc)

echo "Installing R dependencies. This can take few minutes..."

# make sure we have essential tools installed
is_rscript_installed=$(which Rscript | wc -l)
if [ "$is_rscript_installed" = "0" ]; then
        read -p "Seems like Rscript is not installed. Install Rscript? [Y/n]"
        if [ x"$REPLY" = x"" -o x"$REPLY" = x"y" -o x"$REPLY" = x"Y" ]; then
                sudo apt-get install -y r-base-core
        fi
fi

# libcurl4-openssl-dev and libssl-dev are needed for devtools.
sudo apt-get -y install libcurl4-openssl-dev libssl-dev

# Needed for R XML
sudo apt-get install libxml2-dev

sudo Rscript -e "install.packages('devtools', repo = 'https://cran.')"
cd R-package
sudo Rscript -e "library(devtools); library(methods); options(repos=c(CRAN='https://cran.')); install_deps(dependencies = TRUE)"
cd ..

echo "Compiling R package. This can take few minutes..."
sudo make rpkg

echo "Installing R package..."
sudo R CMD INSTALL mxnet_current_r.tar.gz

echo "Done! MXNet for R installation is complete. Go ahead and explore MXNet with R :-)"
復制代碼

測試下是否安裝成功:

復制代碼
> library(mxnet)
Init Rcpp> 
> 
> a <- mx.nd.ones(c(2,3))
> a
     [,1] [,2] [,3]
[1,]    1    1    1
[2,]    1    1    1
復制代碼

ok!

 

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多