|
閑來(lái)無(wú)事,做了幾道測(cè)試題,好久沒(méi)有做算式題了,建議下面的題目,先看左邊,再看右邊??纯茨愕哪X殼是不是和我一樣疼! 左邊是題目和問(wèn)題,右邊是解題過(guò)程。第一題比較簡(jiǎn)單, 我想起了當(dāng)初小學(xué)不及格的成績(jī),幸虧我還記得設(shè)立未知數(shù)和恒等式。 第二題還是一樣的套路,無(wú)非是把未知數(shù)用的多了一點(diǎn),殊不知用的越多,越好解。 第三題有了兩個(gè)未知數(shù),我以為開(kāi)始有點(diǎn)意思了,但是結(jié)果還是那么顯而易見(jiàn)。 第四題的等式解到最后,卡在了一元二次;但是我們知道 E 的取值范圍在 0 到 9 這十個(gè)數(shù)字,可以一個(gè)個(gè)嘗試,測(cè)試題給了四個(gè)選項(xiàng),算起來(lái)其實(shí)會(huì)更快。 我懶?。ú幌肫饋?lái)拿紙和筆),所以編了個(gè)小程序。循環(huán)十次,判斷一下是否相等即可。 第五題有了三個(gè)未知數(shù),這試起來(lái)多費(fèi)勁??! 我的懶勁又上來(lái)了,i、j、k 分別代表 X、Y、Z,每個(gè)都需要從 0 到 9 的過(guò)一遍,總共判斷了 1000 次。 昨晚剛知道了瑪雅人的數(shù)學(xué)是二十進(jìn)制的,我就替他們算了一下。 更厲害的是巴比倫的數(shù)學(xué)是六十進(jìn)制的,果然,大的進(jìn)制有著更多的可能性。不過(guò)巴比倫的數(shù)學(xué)有個(gè)不完善的地方,少了對(duì)一個(gè)數(shù)字的標(biāo)記。 ![]() 看我寫(xiě)的 198 (瑪雅二十進(jìn)制)對(duì)不對(duì),巴比倫的實(shí)在沒(méi)學(xué)會(huì)。 |
|
|