本文授權(quán)轉(zhuǎn)自Linux中國(ID:linux-cn) 本文導(dǎo)航
機器學(xué)習(xí) 這里有一些有用的流程圖和機器學(xué)習(xí)算法表,我只包括了我所發(fā)現(xiàn)的最全面的幾個。 神經(jīng)網(wǎng)絡(luò)架構(gòu) (via:http://www./neural-network-zoo/) 神經(jīng)網(wǎng)絡(luò)公園 微軟 Azure 算法流程圖 (via:https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet) 用于微軟 Azure 機器學(xué)習(xí)工作室的機器學(xué)習(xí)算法 SAS 算法流程圖 (via:http://blogs./content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/) SAS:我應(yīng)該使用哪個機器學(xué)習(xí)算法? 算法總結(jié) (via:http:///a-tour-of-machine-learning-algorithms/) 機器學(xué)習(xí)算法指引 (via:http:///best-known-machine-learning-algorithms-infographic/) 已知的機器學(xué)習(xí)算法哪個最好? 算法優(yōu)劣 (via: https://blog./machine-learning-explained-algorithms-are-your-friend) Python 自然而然,也有許多在線資源是針對 Python 的,這一節(jié)中,我僅包括了我所見過的最好的那些小抄。 算法 (via:https://www./blog/2015/09/full-cheatsheet-machine-learning-algorithms/) Python 基礎(chǔ) (via:http:///python.pdf) 數(shù)據(jù)科學(xué)Python入門備忘單 (via:https://www./community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA) NumPy Cheat Sheet - Python for Data Science (via:https://www./blog/numpy-cheat-sheet/) Numpy Cheat Sheet (via: http:///numpy.pdf)
NumPy Cheat Sheet: Data Analysis in Python (via:https://www./community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE)
Data-Science-Ipython-Notebooks(NumPy) (via:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/ numpy/numpy.ipynb)
Data Analysis with Pandas (via:http:///pandas.pdf)
Pandas Cheat Sheet for Data Science in Python (via:https://www./community/blog/python-pandas-cheat-sheet#gs. S4P4T=U)
Data-Science-Ipython-Notebooks(Pandas) (via:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/ pandas/pandas.ipynb)
Matplotlib Cheat Sheet: Plotting in Python (via:https://www./community/blog/python-matplotlib-cheat-sheet)
Data-Science-Ipython-Notebooks (via: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/ matplotlib/matplotlib.ipynb)
Scikit Learn (via: https://www./community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk)
Machine Learning Cheat Sheet (for scikit-learn) (via:http://peekaboo-vision./2013/01/machine-learning-cheat-sheet-for-scikit.html)
ml_cheat_sheet (via: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning. ipynb)
TensorFlow-Examples (via: https://github.com/aymericdamien/TensorFlow-Examples/blob/ master/notebooks/1_Introduction/basic_operations.ipynb)
Pytorch Cheatsheet (via: https://github.com/bfortuner/pytorch-cheatsheet)
數(shù)學(xué) 如果你希望了解機器學(xué)習(xí),那你就需要徹底地理解統(tǒng)計學(xué)(特別是概率)、線性代數(shù)和一些微積分。我在本科時輔修了數(shù)學(xué),但是我確實需要復(fù)習(xí)一下了。這些小抄提供了機器學(xué)習(xí)算法背后你所需要了解的大部分數(shù)學(xué)知識。 概率 (via:http://www./s/probability_cheatsheet.pdf)
概率小抄 2.0 線性代數(shù) (via: https:///static/tutorials/linear_algebra_in_4_pages.pdf)
四頁內(nèi)解釋線性代數(shù) 統(tǒng)計學(xué) (via: http://web./~csvoss/Public/usabo/stats_handout.pdf)
統(tǒng)計學(xué)小抄 微積分 (via:http://tutorial.math./getfile.aspx?file=B,41,N)
微積分小抄
|
|
|