|
本文是對(duì)pandas官方網(wǎng)站上《10Minutes to pandas》的一個(gè)簡(jiǎn)單的翻譯,原文在這里。這篇文章是對(duì)pandas的一個(gè)簡(jiǎn)單的介紹,詳細(xì)的介紹請(qǐng)參考:Cookbook 。習(xí)慣上,我們會(huì)按下面格式引入所需要的包:
一、 創(chuàng)建對(duì)象可以通過(guò)Data Structure Intro Setion 來(lái)查看有關(guān)該節(jié)內(nèi)容的詳細(xì)信息。 1、可以通過(guò)傳遞一個(gè)list對(duì)象來(lái)創(chuàng)建一個(gè)Series,pandas會(huì)默認(rèn)創(chuàng)建整型索引:
2、通過(guò)傳遞一個(gè)numpyarray,時(shí)間索引以及列標(biāo)簽來(lái)創(chuàng)建一個(gè)DataFrame:
3、通過(guò)傳遞一個(gè)能夠被轉(zhuǎn)換成類似序列結(jié)構(gòu)的字典對(duì)象來(lái)創(chuàng)建一個(gè)DataFrame:
4、查看不同列的數(shù)據(jù)類型:
5、如果你使用的是IPython,使用Tab自動(dòng)補(bǔ)全功能會(huì)自動(dòng)識(shí)別所有的屬性以及自定義的列,下圖中是所有能夠被自動(dòng)識(shí)別的屬性的一個(gè)子集:
二、 查看數(shù)據(jù)詳情請(qǐng)參閱:Basics Section 1、 查看frame中頭部和尾部的行:
2、 顯示索引、列和底層的numpy數(shù)據(jù):
3、 describe()函數(shù)對(duì)于數(shù)據(jù)的快速統(tǒng)計(jì)匯總:
4、 對(duì)數(shù)據(jù)的轉(zhuǎn)置:
5、 按軸進(jìn)行排序
6、 按值進(jìn)行排序
三、 選擇雖然標(biāo)準(zhǔn)的Python/Numpy的選擇和設(shè)置表達(dá)式都能夠直接派上用場(chǎng),但是作為工程使用的代碼,我們推薦使用經(jīng)過(guò)優(yōu)化的pandas數(shù)據(jù)訪問(wèn)方式: .at, .iat, .loc, .iloc 和 .ix詳情請(qǐng)參閱Indexingand Selecing Data 和 MultiIndex/ Advanced Indexing。 l 獲取 1、 選擇一個(gè)單獨(dú)的列,這將會(huì)返回一個(gè)Series,等同于df.A:
2、 通過(guò)[]進(jìn)行選擇,這將會(huì)對(duì)行進(jìn)行切片
l 通過(guò)標(biāo)簽選擇 1、 使用標(biāo)簽來(lái)獲取一個(gè)交叉的區(qū)域
2、 通過(guò)標(biāo)簽來(lái)在多個(gè)軸上進(jìn)行選擇
3、 標(biāo)簽切片
4、 對(duì)于返回的對(duì)象進(jìn)行維度縮減
5、 獲取一個(gè)標(biāo)量
6、 快速訪問(wèn)一個(gè)標(biāo)量(與上一個(gè)方法等價(jià))
l 通過(guò)位置選擇 1、 通過(guò)傳遞數(shù)值進(jìn)行位置選擇(選擇的是行)
2、 通過(guò)數(shù)值進(jìn)行切片,與numpy/python中的情況類似
3、 通過(guò)指定一個(gè)位置的列表,與numpy/python中的情況類似
4、 對(duì)行進(jìn)行切片
5、 對(duì)列進(jìn)行切片
6、 獲取特定的值
l 布爾索引 1、 使用一個(gè)單獨(dú)列的值來(lái)選擇數(shù)據(jù):
2、 使用where操作來(lái)選擇數(shù)據(jù):
3、 使用isin()方法來(lái)過(guò)濾:
l 設(shè)置 1、 設(shè)置一個(gè)新的列:
2、 通過(guò)標(biāo)簽設(shè)置新的值:
3、 通過(guò)位置設(shè)置新的值:
4、 通過(guò)一個(gè)numpy數(shù)組設(shè)置一組新值:
上述操作結(jié)果如下:
5、 通過(guò)where操作來(lái)設(shè)置新的值:
四、 缺失值處理在pandas中,使用np.nan來(lái)代替缺失值,這些值將默認(rèn)不會(huì)包含在計(jì)算中,詳情請(qǐng)參閱:Missing Data Section。 1、 reindex()方法可以對(duì)指定軸上的索引進(jìn)行改變/增加/刪除操作,這將返回原始數(shù)據(jù)的一個(gè)拷貝:、
2、 去掉包含缺失值的行:
3、 對(duì)缺失值進(jìn)行填充:
4、 對(duì)數(shù)據(jù)進(jìn)行布爾填充:
五、 相關(guān)操作詳情請(qǐng)參與Basic Section On Binary Ops l 統(tǒng)計(jì)(相關(guān)操作通常情況下不包括缺失值) 1、 執(zhí)行描述性統(tǒng)計(jì):
2、 在其他軸上進(jìn)行相同的操作:
3、 對(duì)于擁有不同維度,需要對(duì)齊的對(duì)象進(jìn)行操作。Pandas會(huì)自動(dòng)的沿著指定的維度進(jìn)行廣播:
l Apply 1、 對(duì)數(shù)據(jù)應(yīng)用函數(shù):
l 直方圖 具體請(qǐng)參照:Histogrammingand Discretization
l 字符串方法 Series對(duì)象在其str屬性中配備了一組字符串處理方法,可以很容易的應(yīng)用到數(shù)組中的每個(gè)元素,如下段代碼所示。更多詳情請(qǐng)參考:Vectorized String Methods.
六、 合并Pandas提供了大量的方法能夠輕松的對(duì)Series,DataFrame和Panel對(duì)象進(jìn)行各種符合各種邏輯關(guān)系的合并操作。具體請(qǐng)參閱:Mergingsection l Concat
l Join 類似于SQL類型的合并,具體請(qǐng)參閱:Databasestyle joining
l Append 將一行連接到一個(gè)DataFrame上,具體請(qǐng)參閱Appending:
七、 分組對(duì)于”group by”操作,我們通常是指以下一個(gè)或多個(gè)操作步驟: l (Splitting)按照一些規(guī)則將數(shù)據(jù)分為不同的組; l (Applying)對(duì)于每組數(shù)據(jù)分別執(zhí)行一個(gè)函數(shù); l (Combining)將結(jié)果組合到一個(gè)數(shù)據(jù)結(jié)構(gòu)中; 詳情請(qǐng)參閱:Groupingsection
1、 分組并對(duì)每個(gè)分組執(zhí)行sum函數(shù):
2、 通過(guò)多個(gè)列進(jìn)行分組形成一個(gè)層次索引,然后執(zhí)行函數(shù):
八、 Reshaping詳情請(qǐng)參閱HierarchicalIndexing 和 Reshaping。 l Stack
l 數(shù)據(jù)透視表,詳情請(qǐng)參閱:PivotTables.
可以從這個(gè)數(shù)據(jù)中輕松的生成數(shù)據(jù)透視表:
九、 時(shí)間序列Pandas在對(duì)頻率轉(zhuǎn)換進(jìn)行重新采樣時(shí)擁有簡(jiǎn)單、強(qiáng)大且高效的功能(如將按秒采樣的數(shù)據(jù)轉(zhuǎn)換為按5分鐘為單位進(jìn)行采樣的數(shù)據(jù))。這種操作在金融領(lǐng)域非常常見(jiàn)。具體參考:TimeSeries section。
1、 時(shí)區(qū)表示:
2、 時(shí)區(qū)轉(zhuǎn)換:
3、 時(shí)間跨度轉(zhuǎn)換:
4、 時(shí)期和時(shí)間戳之間的轉(zhuǎn)換使得可以使用一些方便的算術(shù)函數(shù)。
十、 Categorical從0.15版本開(kāi)始,pandas可以在DataFrame中支持Categorical類型的數(shù)據(jù),詳細(xì)介紹參看:categoricalintroduction和APIdocumentation。
1、 將原始的grade轉(zhuǎn)換為Categorical數(shù)據(jù)類型:
2、 將Categorical類型數(shù)據(jù)重命名為更有意義的名稱:
3、 對(duì)類別進(jìn)行重新排序,增加缺失的類別:
4、 排序是按照Categorical的順序進(jìn)行的而不是按照字典順序進(jìn)行:
5、 對(duì)Categorical列進(jìn)行排序時(shí)存在空的類別:
十一、 畫(huà)圖具體文檔參看:Plotting docs
對(duì)于DataFrame來(lái)說(shuō),plot是一種將所有列及其標(biāo)簽進(jìn)行繪制的簡(jiǎn)便方法:
十二、 導(dǎo)入和保存數(shù)據(jù)l CSV,參考:Writingto a csv file 1、 寫(xiě)入csv文件:
2、 從csv文件中讀取:
l HDF5,參考:HDFStores 1、 寫(xiě)入HDF5存儲(chǔ):
2、 從HDF5存儲(chǔ)中讀?。?/span>
l Excel,參考:MSExcel 1、 寫(xiě)入excel文件:
2、 從excel文件中讀?。?/span>
|
|
|
來(lái)自: 劉對(duì)對(duì) > 《待分類1》