小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

【原】關(guān)于使用sklearn進(jìn)行數(shù)據(jù)預(yù)處理

 昵稱16883405 2016-07-16

一、標(biāo)準(zhǔn)化(Z-Score),或者去除均值和方差縮放

公式為:(X-mean)/std  計(jì)算時(shí)對(duì)每個(gè)屬性/每列分別進(jìn)行。

將數(shù)據(jù)按期屬性(按列進(jìn)行)減去其均值,并處以其方差。得到的結(jié)果是,對(duì)于每個(gè)屬性/每列來說所有數(shù)據(jù)都聚集在0附近,方差為1。

實(shí)現(xiàn)時(shí),有兩種不同的方式:

  • 使用sklearn.preprocessing.scale()函數(shù),可以直接將給定數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1.,  2.],
...               [ 2.,  0.,  0.],
...               [ 0.,  1., -1.]])
>>> X_scaled = preprocessing.scale(X)
>>> X_scaled                                         
array([[ 0.  ..., -1.22...,  1.33...],
       [ 1.22...,  0.  ..., -0.26...],
       [-1.22...,  1.22..., -1.06...]])
>>>#處理后數(shù)據(jù)的均值和方差
>>> X_scaled.mean(axis=0)
array([ 0.,  0.,  0.])
>>> X_scaled.std(axis=0)
array([ 1.,  1.,  1.])
  • 使用sklearn.preprocessing.StandardScaler類,使用該類的好處在于可以保存訓(xùn)練集中的參數(shù)(均值、方差)直接使用其對(duì)象轉(zhuǎn)換測(cè)試集數(shù)據(jù)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True)
>>> scaler.mean_                                     
array([ 1. ...,  0. ...,  0.33...])
>>> scaler.std_                                      
array([ 0.81...,  0.81...,  1.24...])
>>> scaler.transform(X)                              
array([[ 0.  ..., -1.22...,  1.33...],
       [ 1.22...,  0.  ..., -0.26...],
       [-1.22...,  1.22..., -1.06...]])
>>>#可以直接使用訓(xùn)練集對(duì)測(cè)試集數(shù)據(jù)進(jìn)行轉(zhuǎn)換
>>> scaler.transform([[-1.1., 0.]])               
array([[-2.44...,  1.22..., -0.26...]])


二、將屬性縮放到一個(gè)指定范圍

除了上述介紹的方法之外,另一種常用的方法是將屬性縮放到一個(gè)指定的最大和最小值(通常是1-0)之間,這可以通過preprocessing.MinMaxScaler類實(shí)現(xiàn)。

使用這種方法的目的包括:

1、對(duì)于方差非常小的屬性可以增強(qiáng)其穩(wěn)定性。

2、維持稀疏矩陣中為0的條目。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> X_train = np.array([[ 1., -1.2.],
...                     [ 2.0.0.],
...                     [ 0.1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5       0.        1.        ],
       [ 1.        0.5       0.33333333],
       [ 0.        1.        0.        ]])
>>> #將相同的縮放應(yīng)用到測(cè)試集數(shù)據(jù)中
>>> X_test = np.array([[ -3., -1.4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5       0.        1.66666667]])
>>> #縮放因子等屬性
>>> min_max_scaler.scale_                            
array([ 0.5       0.5       0.33...])
>>> min_max_scaler.min_                              
array([ 0.        0.5       0.33...])

當(dāng)然,在構(gòu)造類對(duì)象的時(shí)候也可以直接指定最大最小值的范圍:feature_range=(min, max),此時(shí)應(yīng)用的公式變?yōu)椋?/span>

X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))

X_scaled=X_std/(max-min)+min


三、正則化(Normalization)

正則化的過程是將每個(gè)樣本縮放到單位范數(shù)(每個(gè)樣本的范數(shù)為1),如果后面要使用如二次型(點(diǎn)積)或者其它核方法計(jì)算兩個(gè)樣本之間的相似性這個(gè)方法會(huì)很有用。

Normalization主要思想是對(duì)每個(gè)樣本計(jì)算其p-范數(shù),然后對(duì)該樣本中每個(gè)元素除以該范數(shù),這樣處理的結(jié)果是使得每個(gè)處理后樣本的p-范數(shù)(l1-norm,l2-norm)等于1。

             p-范數(shù)的計(jì)算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p

該方法主要應(yīng)用于文本分類和聚類中。例如,對(duì)于兩個(gè)TF-IDF向量的l2-norm進(jìn)行點(diǎn)積,就可以得到這兩個(gè)向量的余弦相似性。

1、可以使用preprocessing.normalize()函數(shù)對(duì)指定數(shù)據(jù)進(jìn)行轉(zhuǎn)換:

1
2
3
4
5
6
7
8
9
>>> X = [[ 1., -1.2.],
...      [ 2.0.0.],
...      [ 0.1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
>>> X_normalized                                     
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])


2、可以使用processing.Normalizer()類實(shí)現(xiàn)對(duì)訓(xùn)練集和測(cè)試集的擬合和轉(zhuǎn)換:

1
2
3
4
5
6
7
8
9
10
11
12
>>> normalizer = preprocessing.Normalizer().fit(X)  # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')
>>>
>>> normalizer.transform(X)                           
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])
>>> normalizer.transform([[-1.1., 0.]])            
array([[-0.70...,  0.70...,  0.  ...]])


補(bǔ)充:





    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多