小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

三角函數(shù)公式

 超越夢想之上 2014-09-05

三角函數(shù)公式

三角函數(shù)是數(shù)學(xué)中屬于初等函數(shù)中的超越函數(shù)的一類函數(shù)。它們的本質(zhì)是任何角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中定義的。其定義城為整個實數(shù)域。
10
本詞條 無基本信息模塊, 歡迎各位 編輯詞條,額外獲取10個積分。
目錄
展開

1 相關(guān)概念

相關(guān)概念三角函數(shù)的標(biāo)準(zhǔn)英文讀音音標(biāo)三角函數(shù)公式三角函數(shù)公式正弦:sine(簡寫sin)[sain]

余弦:cosine(簡寫cos)[k?usain]

余矢:versed cosine(簡寫vercos)['v?:s?:d][k?usain]

直角三角函數(shù)

直角三角函數(shù) (∠α是銳角)

三角關(guān)系

倒數(shù)關(guān)系:

商的關(guān)系:

平方關(guān)系:

2 三角規(guī)律

三角函數(shù)看似很多,很復(fù)雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律就會發(fā)現(xiàn)三角函數(shù)各個公式之間有強(qiáng)大的聯(lián)系。而掌握三角函數(shù)的內(nèi)部規(guī)律及本質(zhì)也是學(xué)好三角函數(shù)的關(guān)鍵所在。

三角函數(shù)本質(zhì):

根據(jù)三角函數(shù)定義推導(dǎo)公式根據(jù)右圖,有

sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y

深刻理解了這一點,下面所有的三角公式都可以從這里出發(fā)推導(dǎo)出來,比如以推導(dǎo)

sin(A+B) = sinAcosB+cosAsinB 為例:

推導(dǎo):

首先畫單位圓交X軸于C,D,在單位圓上有任意A,B點。角AOD為α,BOD為β,旋轉(zhuǎn)AOB使OB與OD重合,形成新A'OD。

A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))

OA'=OA=OB=OD=1,D(1,0)

∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2

和差化積積化和差用還原法結(jié)合上面公式可推出(換(a+b)/2與(a-b)/2)

單位圓定義

單位圓

六個三角函數(shù)也可以依據(jù)半徑為一中心為原點的單位圓來定義。單位圓定義在實際計算上沒有大的價值;實際上對多數(shù)角它都依賴于直角三角形。但是單位圓定義的確允許三角函數(shù)對所有正數(shù)和負(fù)數(shù)輻角都有定義,而不只是對于在 0 和 π/2弧度之間的角。它也提供了一個圖象,把所有重要的三角函數(shù)都包含了。根據(jù)勾股定理,單位圓的等式是:x^2+y^2=1

圖象中給出了用弧度度量的一些常見的角。逆時針方向的度量是正角,而順時針的度量是負(fù)角。設(shè)一個過原點的線,同x軸正半部分得到一個角θ,并與單位圓相交。這個交點的x和y坐標(biāo)分別等于 cosθ和 sinθ。圖象中的三角形確保了這個公式;半徑等于斜邊且長度為1,所以有 sinθ=y/1 和 cosθ=x/1。單位圓可以被視為是通過改變鄰邊和對邊的長度,但保持斜邊等于 1的一種查看無限個三角形的方式。

3 特殊值

sin30°=1/2

sin45°=√2/2

sin60°=√3/2

cos30°=√3/2

cos45°=√2/2

cos60°=1/2

tan30°=√3/3

tan45°=1

tan60°=√3[1]

cot30°=√3

cot45°=1

cot60°=√3/3

sin15°=(√6-√2)/4

sin75°=(√6+√2)/4

cos15°=(√6+√2)/4

cos75°=(√6-√2)/4(這四個可根據(jù)sin(45°±30°)=sin45°cos30°±cos45°sin30°得出)

sin18°=(√5-1)/4 (這個值在高中競賽和自招中會比較有用,即黃金分割的一半)

4 重要定理

4.1 正弦定理

正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R

其中,R為△ABC的外接圓的半徑

4.2 余弦定理

余弦定理:在△ABC中,b^2 = a^2 + c^2 - 2ac·cos θ。

其中,θ為邊a與邊c的夾角

5 常用公式

5.1 誘導(dǎo)公式

三角函數(shù)的誘導(dǎo)公式(六公式)

公式一: 

sin(α+k*2π)=sinα

cos(α+k*2π)=cosα

tan(α+k*2π)=tanα

公式二:

sin(π+α) = -sinα

cos(π+α) = -cosα

tan(π+α)=tanα

公式三:

sin(-α) = -sinα

cos(-α) = cosα

tan (-α)=-tanα

公式四:

sin(π-α) = sinα

cos(π-α) = -cosα

tan(π-α) =-tanα

公式五:

sin(π/2-α) = cosα

cos(π/2-α) =sinα

由于π/2+α=π-(π/2-α),由公式四和公式五可得

公式六:

sin(π/2+α) = cosα

cos(π/2+α) = -sinα

誘導(dǎo)公式 記背訣竅:奇變偶不變,符號看象限。

5.2 和(差)角公式

三角和公式

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·coscγ-osα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)

(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)

積化和差的四個公式

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

和差化積的四個公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

5.3 倍角公式

sin(3a)→3sina-4sin^3a

=sin(a+2a)

=sin2acosa+cos2asina

=2sina(1-sin^2a)+(1-2sin^2a)sina

=3sina-4sin^3a

cos3a→(2cos^2a-1)cosa-2(1-cos^2a)cosa

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos^2a-1)cosa-2(1-cos^2a)cosa

=4cos^3a-3cosa

sin3a→4sinasin(60°+a)sin(60°-a)

=3sina-4sin^3a

=4sina(3/4-sin^2a)

=4sina[(√3/2)-sina][(√3/2)+sina]

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a→4cosacos(60°-a)cos(60°+a)

=4cos^3a-3cosa

=4cosa(cos^2a-3/4)

=4cosa[cos^2a-(√3/2)^2]

=4cosa(cosa-cos30°)(cosa+cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

tan3a→tanatan(60°-a)tan(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

三倍角

sin3α=3sinα-4sin^3 α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cos^3 α-3cosα=4cosα·cos(π/3+α)cos(π/3-α)

tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)

其他多倍角

四倍角

sin4A=-4*(cosA*sinA*(2*sinA^2-1))

cos4A=1+(-8*cosA^2+8*cosA^4)

tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

五倍角

sin5A=16sinA^5-20sinA^3+5sinA

cos5A=16cosA^5-20cosA^3+5cosA

tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

六倍角

sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))

cos6A=(-1+2*cosA)*(16*cosA^4-16*cosA^2+1)

tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)

七倍角

sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))

cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))

tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

八倍角

sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))

cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)

tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)

九倍角

sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))

cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))

tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)

十倍角

sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

N倍角

根據(jù)棣莫弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)

為方便描述,令sinθ=s,cosθ=c

考慮n為正整數(shù)的情形:

cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>;比較兩邊的實部與虛部

實部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i*

虛部:i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …

對所有的自然數(shù)n:

⒈cos(nθ):

公式中出現(xiàn)的s都是偶次方,而s^2=1-c^2(平方關(guān)系),因此全部都可以改成以c(也就是cosθ)表示。

⒉sin(nθ):

⑴當(dāng)n是奇數(shù)時:公式中出現(xiàn)的c都是偶次方,而c^2=1-s^2(平方關(guān)系),因此全部都可以改成以s(也 就是sinθ)表示。

⑵當(dāng)n是偶數(shù)時:公式中出現(xiàn)的c都是奇次方,而c^2=1-s^2(平方關(guān)系),因此即使再怎么換成s,都至少會剩c(也就是 cosθ)的一次方無法消掉。

例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)

特殊公式

(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)

證明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]

=sin(a+θ)*sin(a-θ)

5.4 坡度公式

我們通常把坡面的垂直高度h與水平寬度l的比叫做坡度(也叫坡比), 用字母i表示,

即i=h / l,坡度的一般形式寫成l : m形式,如i=1:5.如果把坡面與水平面的夾角記作

a(叫做坡角),那么i=h/l=tan a.

半角公式萬能公式6輔助角公式

注:該公式又稱收縮公式 / 強(qiáng)提公式 / 化一公式 等

asin α+bcos α=√(a^2+b^2)sin(α+φ),其中tan φ=b/a

asinA+bcosB=根號下a方+b方×(根號下a方+b方分之a(chǎn)×sinA+根號下a方+b方分之b×cosB) 令根號下a方+b方分之a(chǎn)=cosC 則根號下a方+b方分之b=sinC asinA+bcosB=根號下a方+b方(sinAcosC+cosBsinC)=根號下a方+b方×sin(A+C)

5.5 雙曲函數(shù)

sh a = [e^a-e^(-a)]/2

ch a = [e^a+e^(-a)]/2

th a = sin h(a)/cos h(a)

公式一:

設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

sin(π+α)= -sinα

cos(π+α)= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α與 -α的三角函數(shù)值之間的關(guān)系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)

A·sin(ωt+θ)+ B·sin(ωt+φ) =

√{(A+2ABcos(θ-φ)} · sin{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)}}

√表示根號,包括{……}中的內(nèi)容

5.6 反三角函數(shù)公式

arcsin(-x)= -arcsinx

arccos(-x)=π-arccosx

arctan(-x)= -arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=arctanx+arccotx=π/2[1]

數(shù)學(xué)公式
半角公式 倍角公式 蔡勒公式 差立方 差平方
乘法公式 導(dǎo)數(shù)公式 到角公式 德摩根公式 定比分點公式
二倍角公式 二階微分方程
高斯公式 格林第二公式 格林第一公式 格林公式 海倫公式
和差化積 和差平方 和立方 和平方 弧長公式
弧長計算公式 換底公式 夾角公式 角平分線長公式 柯西-阿達(dá)馬公式
柯西積分公式 拉普拉斯展開 立方和差 兩點間距離公式 兩角和公式
默比烏斯反演公式 牛頓-寇次公式 歐拉-笛卡爾公式 歐拉公式 拋物線標(biāo)準(zhǔn)方程
平方差公式 平移公式 婆羅摩笈多公式 球的表面積公式 全概率公式
全期望公式 全微分方程
塞爾伯格跡公式 三倍角公式 三角不等式 三角函數(shù)差角公式 三角函數(shù)公式
三角函數(shù)和角公式 三角函數(shù)周期公式 扇形面積公式 扇形面積公式 斯科倫范式
斯特靈公式 斯托克斯公式 素數(shù)公式 泰勒公式 通項公式
外爾特征標(biāo)公式 完全平方公式 斜棱柱側(cè)面積公式 斜棱柱體積 斜率公式
一階微分方程 誘導(dǎo)公式 圓的標(biāo)準(zhǔn)方程 圓的一般方程 圓臺側(cè)面積公式
圓柱側(cè)面積公式 圓錐側(cè)面積公式 圓錐體體積公式 正棱臺側(cè)面積公式 正棱錐側(cè)面積公式
直棱柱側(cè)面積公式 重心坐標(biāo)公式 柱體體積公式 錐體體積公式
參考資料:

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多