| 三角函數(shù)公式三角函數(shù)是數(shù)學(xué)中屬于初等函數(shù)中的超越函數(shù)的一類函數(shù)。它們的本質(zhì)是任何角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中定義的。其定義城為整個實數(shù)域。     10    本詞條  無基本信息模塊,   歡迎各位 編輯詞條,額外獲取10個積分。  目錄 展開 1 相關(guān)概念相關(guān)概念三角函數(shù)的標(biāo)準(zhǔn)英文讀音音標(biāo) 余弦:cosine(簡寫cos)[k?usain] 余矢:versed cosine(簡寫vercos)['v?:s?:d][k?usain] 直角三角函數(shù) 直角三角函數(shù) (∠α是銳角) 三角關(guān)系 倒數(shù)關(guān)系: 商的關(guān)系: 平方關(guān)系: 2 三角規(guī)律三角函數(shù)看似很多,很復(fù)雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律就會發(fā)現(xiàn)三角函數(shù)各個公式之間有強(qiáng)大的聯(lián)系。而掌握三角函數(shù)的內(nèi)部規(guī)律及本質(zhì)也是學(xué)好三角函數(shù)的關(guān)鍵所在。 三角函數(shù)本質(zhì): 根據(jù)三角函數(shù)定義推導(dǎo)公式根據(jù)右圖,有 sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y 深刻理解了這一點,下面所有的三角公式都可以從這里出發(fā)推導(dǎo)出來,比如以推導(dǎo) sin(A+B) = sinAcosB+cosAsinB 為例: 推導(dǎo): 首先畫單位圓交X軸于C,D,在單位圓上有任意A,B點。角AOD為α,BOD為β,旋轉(zhuǎn)AOB使OB與OD重合,形成新A'OD。 A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) OA'=OA=OB=OD=1,D(1,0) ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化積及積化和差用還原法結(jié)合上面公式可推出(換(a+b)/2與(a-b)/2) 單位圓定義 單位圓 六個三角函數(shù)也可以依據(jù)半徑為一中心為原點的單位圓來定義。單位圓定義在實際計算上沒有大的價值;實際上對多數(shù)角它都依賴于直角三角形。但是單位圓定義的確允許三角函數(shù)對所有正數(shù)和負(fù)數(shù)輻角都有定義,而不只是對于在 0 和 π/2弧度之間的角。它也提供了一個圖象,把所有重要的三角函數(shù)都包含了。根據(jù)勾股定理,單位圓的等式是:x^2+y^2=1 圖象中給出了用弧度度量的一些常見的角。逆時針方向的度量是正角,而順時針的度量是負(fù)角。設(shè)一個過原點的線,同x軸正半部分得到一個角θ,并與單位圓相交。這個交點的x和y坐標(biāo)分別等于 cosθ和 sinθ。圖象中的三角形確保了這個公式;半徑等于斜邊且長度為1,所以有 sinθ=y/1 和 cosθ=x/1。單位圓可以被視為是通過改變鄰邊和對邊的長度,但保持斜邊等于 1的一種查看無限個三角形的方式。 3 特殊值sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3[1] cot30°=√3 cot45°=1 cot60°=√3/3 sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4 cos75°=(√6-√2)/4(這四個可根據(jù)sin(45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (這個值在高中競賽和自招中會比較有用,即黃金分割的一半) 4 重要定理4.1 正弦定理正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R 其中,R為△ABC的外接圓的半徑。 4.2 余弦定理余弦定理:在△ABC中,b^2 = a^2 + c^2 - 2ac·cos θ。 其中,θ為邊a與邊c的夾角。 5 常用公式5.1 誘導(dǎo)公式三角函數(shù)的誘導(dǎo)公式(六公式) 公式一: sin(α+k*2π)=sinα cos(α+k*2π)=cosα tan(α+k*2π)=tanα 公式二: sin(π+α) = -sinα cos(π+α) = -cosα tan(π+α)=tanα 公式三: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 公式四: sin(π-α) = sinα cos(π-α) = -cosα tan(π-α) =-tanα 公式五: sin(π/2-α) = cosα cos(π/2-α) =sinα 由于π/2+α=π-(π/2-α),由公式四和公式五可得 公式六: sin(π/2+α) = cosα cos(π/2+α) = -sinα 誘導(dǎo)公式 記背訣竅:奇變偶不變,符號看象限。 5.2 和(差)角公式三角和公式 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·coscγ-osα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ) (α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ) 積化和差的四個公式 sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 和差化積的四個公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2) 5.3 倍角公式sin(3a)→3sina-4sin^3a =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin^2a)+(1-2sin^2a)sina =3sina-4sin^3a cos3a→(2cos^2a-1)cosa-2(1-cos^2a)cosa =cos(2a+a) =cos2acosa-sin2asina =(2cos^2a-1)cosa-2(1-cos^2a)cosa =4cos^3a-3cosa sin3a→4sinasin(60°+a)sin(60°-a) =3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)-sina][(√3/2)+sina] =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2] =4sinasin(60°+a)sin(60°-a) cos3a→4cosacos(60°-a)cos(60°+a) =4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2] =4cosa(cosa-cos30°)(cosa+cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) tan3a→tanatan(60°-a)tan(60°+a) 上述兩式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 三倍角 sin3α=3sinα-4sin^3 α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cos^3 α-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a) 其他多倍角 四倍角 sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4) 五倍角 sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角 sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=(-1+2*cosA)*(16*cosA^4-16*cosA^2+1) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6) 七倍角 sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角 sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8) 九倍角 sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8) 十倍角 sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1)) tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) N倍角 根據(jù)棣莫弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 為方便描述,令sinθ=s,cosθ=c 考慮n為正整數(shù)的情形: cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>;比較兩邊的實部與虛部 實部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i* 虛部:i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... … 對所有的自然數(shù)n: ⒈cos(nθ): 公式中出現(xiàn)的s都是偶次方,而s^2=1-c^2(平方關(guān)系),因此全部都可以改成以c(也就是cosθ)表示。 ⒉sin(nθ): ⑴當(dāng)n是奇數(shù)時:公式中出現(xiàn)的c都是偶次方,而c^2=1-s^2(平方關(guān)系),因此全部都可以改成以s(也 就是sinθ)表示。 ⑵當(dāng)n是偶數(shù)時:公式中出現(xiàn)的c都是奇次方,而c^2=1-s^2(平方關(guān)系),因此即使再怎么換成s,都至少會剩c(也就是 cosθ)的一次方無法消掉。 例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2) 特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 證明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 5.4 坡度公式我們通常把坡面的垂直高度h與水平寬度l的比叫做坡度(也叫坡比), 用字母i表示, 即i=h / l,坡度的一般形式寫成l : m形式,如i=1:5.如果把坡面與水平面的夾角記作 a(叫做坡角),那么i=h/l=tan a. 半角公式萬能公式6輔助角公式 注:該公式又稱收縮公式 / 強(qiáng)提公式 / 化一公式 等 asin α+bcos α=√(a^2+b^2)sin(α+φ),其中tan φ=b/a asinA+bcosB=根號下a方+b方×(根號下a方+b方分之a(chǎn)×sinA+根號下a方+b方分之b×cosB) 令根號下a方+b方分之a(chǎn)=cosC 則根號下a方+b方分之b=sinC asinA+bcosB=根號下a方+b方(sinAcosC+cosBsinC)=根號下a方+b方×sin(A+C) 5.5 雙曲函數(shù)sh a = [e^a-e^(-a)]/2 ch a = [e^a+e^(-a)]/2 th a = sin h(a)/cos h(a) 公式一: 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α與 -α的三角函數(shù)值之間的關(guān)系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A+2ABcos(θ-φ)} · sin{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)}} √表示根號,包括{……}中的內(nèi)容 5.6 反三角函數(shù)公式arcsin(-x)= -arcsinx arccos(-x)=π-arccosx arctan(-x)= -arctanx arccot(-x)=π-arccotx arcsinx+arccosx=arctanx+arccotx=π/2[1] 
 | 
|  |