小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

科學(xué)網(wǎng)

 一劍倚天寒 2014-07-27

復(fù)雜系統(tǒng)行為預(yù)測(cè)的

“機(jī)理+辨識(shí)”策略

   作為對(duì)清華大學(xué)老師們《電力系統(tǒng)負(fù)荷預(yù)測(cè)研究綜述與發(fā)展方向的探討》(電力系統(tǒng)自動(dòng)化,2004, 28(17): 1-11.)中“類似的這種策略性的升華”的學(xué)習(xí)和初步回答,我們課題組提出《復(fù)雜系統(tǒng)行為預(yù)測(cè)的“機(jī)理+辨識(shí)”策略》,作為對(duì)“組合預(yù)測(cè)”策略的細(xì)化和發(fā)展。

2006-09-29首發(fā)在《中國(guó)科技論文在線》200609-432,http://www./index.php/default/releasepaper/content/200609-432

后被評(píng)為五星級(jí)精品論文:精品論文,2007, 2(1): 83-87。見(jiàn)附件,版權(quán)歸中國(guó)科技論文在線。

 

簡(jiǎn)單示意圖

單一模型?組合預(yù)測(cè)(1969)?“機(jī)理+辨識(shí)”預(yù)測(cè)(2006)

 

 

“機(jī)理+辨識(shí)”策略的六個(gè)主要特征 

     

   ①是“機(jī)理+回歸+辨識(shí)”三階段預(yù)測(cè):機(jī)理階段主要考慮了已知影響因子的作用,回歸階段主要考慮了已知影響因子的未知方式作用,辨識(shí)階段再通過(guò)辨識(shí)模型對(duì)殘差進(jìn)行經(jīng)驗(yàn)預(yù)測(cè)。復(fù)雜時(shí)間序列預(yù)測(cè)的經(jīng)典策略是分解成“趨勢(shì)+季節(jié)性+殘差”(trend+seasonal+residual)三類成分,再分別預(yù)測(cè)。但這種分解方法只是從數(shù)據(jù)到數(shù)據(jù),沒(méi)有利用復(fù)雜系統(tǒng)的已知結(jié)構(gòu)等信息。


   ②模型評(píng)價(jià):在復(fù)雜系統(tǒng)預(yù)測(cè)中,建議對(duì)預(yù)測(cè)中采用的多個(gè)模型的表現(xiàn)(預(yù)測(cè)結(jié)果)進(jìn)行評(píng)價(jià),如“平均誤差”(代表預(yù)測(cè)的系統(tǒng)誤差)、“平均絕對(duì)值誤差”、“最大誤差”、“重要數(shù)據(jù)的預(yù)測(cè)誤差(如對(duì)最大值、最小值、特定數(shù)值等)”等進(jìn)行統(tǒng)計(jì)考核,以確定該模型在多模型合成中的地位和作用。


   ③預(yù)測(cè)結(jié)果的靈活合成:根據(jù)對(duì)系統(tǒng)將來(lái)行為的預(yù)測(cè)目的,根據(jù)各模型的預(yù)測(cè)表現(xiàn),由控制誤差的關(guān)鍵量,采用靈活的多套預(yù)測(cè)值的合成,以期在人們最感興趣的未來(lái)行為預(yù)測(cè)中得到最優(yōu)效果。這是對(duì)組合預(yù)測(cè)、ensebmle預(yù)測(cè)(因散預(yù)測(cè),也可譯為集合預(yù)測(cè))技術(shù)的進(jìn)一步發(fā)展。


   ④概率化預(yù)測(cè):由于采用了靈活的多模型預(yù)測(cè),可以用一定的方法把這些預(yù)測(cè)結(jié)果的概率統(tǒng)計(jì)性質(zhì),用概率的方法表示,使得對(duì)預(yù)測(cè)結(jié)果的風(fēng)險(xiǎn)進(jìn)行更準(zhǔn)確和科學(xué)的評(píng)估。


   ⑤非平穩(wěn)數(shù)據(jù)的平穩(wěn)化技術(shù)。通過(guò)“機(jī)理+辨識(shí)”策略,以及差分等技術(shù),實(shí)現(xiàn)非平穩(wěn)數(shù)據(jù)的平穩(wěn)化,提高辨識(shí)預(yù)測(cè)的準(zhǔn)確率。


   ⑥預(yù)測(cè)準(zhǔn)確率上限和可預(yù)測(cè)性研究:在“機(jī)理+辨識(shí)”預(yù)測(cè)策略的第一階段,對(duì)系統(tǒng)的預(yù)測(cè)準(zhǔn)確率上限和可預(yù)測(cè)性進(jìn)行研究。

 

歡迎您的批評(píng)與討論!

 

精品論文《復(fù)雜系統(tǒng)行為預(yù)測(cè)的機(jī)理+辨識(shí)策略》

   

 

參考文獻(xiàn)

[1]     張嗣瀛. 復(fù)雜性科學(xué),整體規(guī)律與定性研究[J. 復(fù)雜系統(tǒng)與復(fù)雜性科學(xué),2005,21):71-83

[2]     中華人民共和國(guó)國(guó)務(wù)院. 國(guó)家中長(zhǎng)期科學(xué)和技術(shù)發(fā)展規(guī)劃綱要(2006—2020年)EB/OL. http://www.gov.cn/

[3]     康重慶,夏清,張伯明. 電力系統(tǒng)負(fù)荷預(yù)測(cè)研究綜述與發(fā)展方向的探討[J. 電力系統(tǒng)自動(dòng)化,2004,2817):1-11

[4]     Yue YH, Han WX, Zhang WB. Local adding-weight linear regression forecasting method of chaotic series based on degree of incidenceJ. Proceedings of the CSEE2004, 24(22): 17-20

[5]     Jiang CW, Li T. Forecasting method study on chaotic load series with high embedded J. Energy Conversion and Management, 2005, 46(5): 667-676

[6]     Lelitha V, Laurence RR. A comparison of the performance of artificialA. Neural Networks And Support Vector Machines For The Prediction Of Traffic SpeedC. 2004 IEEE Intelligent Vehicles Symposium, University of Panna, Parma, Italy June 1447,2004: 194-199

[7]     Li KP, Gao ZY. Nonlinear dynamics analysis of traffic time seriesJ. Modern Physics Letters B, 2004, 18(26): 1-8

[8]     Wang DS, He GG. Summary and prospects of the study on traffic chaosJ. China Civil Engineering Journal, 2003, 361: 68-74

[9]     Dake Chen, Mark AC Alexey K, et al. Predictability of El Ni?o over the past 148 yearsJ. Nature, 2004, 428 (6984): 733-736

[10]  Tziperman, E, Stone, L, Cane, M A, Jarosh, H. El Ni?o chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillatorJ. Science, 1994, 264(5155): 72-74

[11]  美國(guó)National Science Foundation. DDDAS: Dynamic Data Driven Applications SystemsEB/OL. http://www./funding

[12]  Oguchi T, Nijmeijer H. Prediction of chaotic behaviorJ. IEEE Trans. on CAS I: 2005, 52 (11): 2464-2472

[13]  呂金虎, 陸君安, 陳士化. 混沌時(shí)間序列分析及其應(yīng)用M. 武漢:武漢大學(xué)出版社,2002

[14]  Kantz H, Ragwitz M. Phase space reconstruction and nonlinear predictions for stationary and nonstationary Markovian processesJ. International Journal of Bifurcation and Chaos, 2004, 14(6): 1935-1945

[15]  Christopher CS, Alfred W H. Medium-term prediction of chaosJ. Physical Review Letters, 2006, 96(4): 044101

[16]  Garcia SP, Almeida JS. Nearest neighbor embedding with different time delaysJ. Physical Review E, 2005, 71 (3): 037204

[17]  Small M, Tse CK. Optimal embedding parameters: a modelling paradigmJ. Physics D, 2004, 194: 283-296

[18]  Kim, HS, Eykholt, R, Salas, JD. Nonlinear Dynamics, Delay Times, and Embedding WindowsJ, Physica D, 1999, 127: 48-60

[19]  Kugiumtzis D. State Space Reconstruction Parameters in the Analysis of Chaotic Time Series - the Role of the Time Window LengthJ. Physica D, 1996, 95: 13-27

[20]  Feeny BF, Lin G. Fractional derivatives applied to phase-space reconstructionsJ. Nonlinear Dynamics, 2004, 38 (1-4): 85-99

[21]  Yang SQ, Jia CY. Two practical methods of phase space reconstructionJ. Acta Physica Sinica, 2002, 51(11): 2452-2458

[22]  Li HC,Zhang JS. Local Prediction of Chaotic Time Series Based on Support Vector MachineJ. Chinese Physics Letters, 2005, 22(11): 2776 – 2779

[23]  Ren R, Xu J, Zhu SH.Prediction of chaotic time sequence using least squares support vector domainJ. Acta Physica Sinica, 2006, 55 (2): 555-563

[24]  Gan JC, Xiao XC. Nonlinear adaptive multi-step prediction of chaotic time series based on points in the neighborthoodJ. Acta Physica Sinica, 2003, 52(12): 2995-3001

[25]  Ma JH,Chen YS,Xin BG. Study on prediction methods for dynamics systems of nonlinear chaotic time seriesJ. Applied Mathematics and Mechanics, 2004, 25(6): 605- 611

[26]  Li HC, Zhang JS,Xiao XC. Neural Volterra filter for chaotic time series predictionJ. Chinese Physics, 2005, 14(11): 2181-2188

[27]  Cui WZ, Zhu CC, Bao WX, Liu JH. Chaotic time series prediction using mean-field theory for support vector machineJ. Chinese Physics, 2005, 14(5): 922-919

[28]  楊正瓴,張廣濤,陳紅新,林孔元. 短期負(fù)荷預(yù)測(cè)負(fù)荷趨勢(shì)加混沌法的參數(shù)優(yōu)化[J. 電網(wǎng)技術(shù),2005,29(4)27 – 30, 44

[29]  Mark A Cane. The evolution of El Ni?o, past and futureJ. Earth and Planetary Science Letters, 2005, 230 (3-4): 227-240

[30]  Dake Chen, M A Cane, A Kaplan, S E Zebiak, D Huang, Predictability of El Ni?o in the past 148 yearsJ. Nature, 428, 733-736, 2004.

[31]  Michael E Mann, Mark A Cane, Stephen E Zebiak, Amy ClementT. Volcanic and Solar Forcing of the Tropical Pacific over the Past 1000 YearsJ. Journal Of Climate, 2005, 18(3): 447-456

[32]  J Lean, G Rottman, J Harder, G Kopp. SORCE contributions to new understanding of global change and solar variabilityJ. Solar Physics, 2005, 230(1-2): 27-53

[33]  J Hansen, M Sato, R Ruedy, et al. Efficacy of climate forcingsJ. Journal Of Geophysical Research-Atospheres, 2005, 110 (D18): Art. No. D18104

[34]  Ping Chang, Yue Fang, R. Saravanan, Link Ji, Howard Seidel1. The cause of the fragile relationship between the Pacific El Ni?o and the Atlantic Ni?o [J]. Nature, 2006, 443(7109): 324-328

[35]  P. Foukal, C. Fr?hlich, H. Spruit and T. M. L. Wigley. Variations in solar luminosity and their effect on the Earth's climate[J]. Nature, 2006, 443(7108): 161-166

[36]  韓延本,趙娟,李志安. 由地球自轉(zhuǎn)的年際變化預(yù)測(cè)El Ni?o事件[J. 科學(xué)通報(bào),2001, 46(22): 1858-1861

[37]  鄭大偉,丁曉利,周永宏,陳永奇,李志林,廖新浩. El Ni?o事件的前兆現(xiàn)象在日長(zhǎng)和海平面觀測(cè)中的反映[J. 科學(xué)通報(bào),2000, 4523):2572-2576

[38]  韓延本,李志安,趙娟. 天文學(xué)與自然災(zāi)害的相關(guān)研究[J. 北京師范大學(xué)學(xué)報(bào):自然科學(xué)版,2000, 36(4): 555-557

[39]  任振球. 全球變化研究的新思維[J. 地學(xué)前緣,2002, 9(1): 27-33

[40]  蘇旸. 氣候變化的天文理論[J. 地球物理學(xué)進(jìn)展,2000,153): 102-111

[41]  謝炯光,曾琮,紀(jì)忠萍. 中國(guó)近30 年來(lái)氣象統(tǒng)計(jì)預(yù)報(bào)進(jìn)展[J]. 氣象科技, 2003, 31(2): 67 –83

[42]  F. Atger. The Skill of Ensemble Prediction Systems [J]. Monthly Weather Review, 1999, 127(9): 1941–1953



http://blog.sciencenet.cn/blog-107667-381404.html
上一篇:[請(qǐng)教] 宇宙膨脹的加速度是多少?
下一篇:[建議] 成立“預(yù)測(cè)”圈子(更新中)

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多