|
復(fù)雜系統(tǒng)行為預(yù)測(cè)的 “機(jī)理+辨識(shí)”策略 作為對(duì)清華大學(xué)老師們《電力系統(tǒng)負(fù)荷預(yù)測(cè)研究綜述與發(fā)展方向的探討》(電力系統(tǒng)自動(dòng)化,2004, 28(17): 1-11.)中“類似的這種策略性的升華”的學(xué)習(xí)和初步回答,我們課題組提出《復(fù)雜系統(tǒng)行為預(yù)測(cè)的“機(jī)理+辨識(shí)”策略》,作為對(duì)“組合預(yù)測(cè)”策略的細(xì)化和發(fā)展。 2006-09-29首發(fā)在《中國(guó)科技論文在線》200609-432,http://www./index.php/default/releasepaper/content/200609-432 后被評(píng)為五星級(jí)精品論文:精品論文,2007, 2(1): 83-87。見(jiàn)附件,版權(quán)歸中國(guó)科技論文在線。
簡(jiǎn)單示意圖 單一模型?組合預(yù)測(cè)(1969)?“機(jī)理+辨識(shí)”預(yù)測(cè)(2006)
“機(jī)理+辨識(shí)”策略的六個(gè)主要特征
①是“機(jī)理+回歸+辨識(shí)”三階段預(yù)測(cè):機(jī)理階段主要考慮了已知影響因子的作用,回歸階段主要考慮了已知影響因子的未知方式作用,辨識(shí)階段再通過(guò)辨識(shí)模型對(duì)殘差進(jìn)行經(jīng)驗(yàn)預(yù)測(cè)。復(fù)雜時(shí)間序列預(yù)測(cè)的經(jīng)典策略是分解成“趨勢(shì)+季節(jié)性+殘差”(trend+seasonal+residual)三類成分,再分別預(yù)測(cè)。但這種分解方法只是從數(shù)據(jù)到數(shù)據(jù),沒(méi)有利用復(fù)雜系統(tǒng)的已知結(jié)構(gòu)等信息。
歡迎您的批評(píng)與討論!
精品論文《復(fù)雜系統(tǒng)行為預(yù)測(cè)的“機(jī)理+辨識(shí)”策略》
參考文獻(xiàn) [1] 張嗣瀛. 復(fù)雜性科學(xué),整體規(guī)律與定性研究[J]. 復(fù)雜系統(tǒng)與復(fù)雜性科學(xué),2005,2(1):71-83 [2] 中華人民共和國(guó)國(guó)務(wù)院. 國(guó)家中長(zhǎng)期科學(xué)和技術(shù)發(fā)展規(guī)劃綱要(2006—2020年)[EB/OL]. http://www.gov.cn/ [3] 康重慶,夏清,張伯明. 電力系統(tǒng)負(fù)荷預(yù)測(cè)研究綜述與發(fā)展方向的探討[J]. 電力系統(tǒng)自動(dòng)化,2004,28(17):1-11 [4] Yue YH, Han WX, Zhang WB. Local adding-weight linear regression forecasting method of chaotic series based on degree of incidence[J]. Proceedings of the CSEE,2004, 24(22): 17-20 [5] Jiang CW, Li T. Forecasting method study on chaotic load series with high embedded [J]. Energy Conversion and Management, 2005, 46(5): 667-676 [6] Lelitha V, Laurence RR. A comparison of the performance of artificial[A]. Neural Networks And Support Vector Machines For The Prediction Of Traffic Speed[C]. 2004 IEEE Intelligent Vehicles Symposium, University of Panna, Parma, Italy June 1447,2004: 194-199 [7] Li KP, Gao ZY. Nonlinear dynamics analysis of traffic time series[J]. Modern Physics Letters B, 2004, 18(26): 1-8 [8] Wang DS, He GG. Summary and prospects of the study on traffic chaos[J]. China Civil Engineering Journal, 2003, 36(1): 68-74 [9] Dake Chen, Mark AC Alexey K, et al. Predictability of El Ni?o over the past 148 years[J]. Nature, 2004, 428 (6984): 733-736 [10] Tziperman, E, Stone, L, Cane, M A, Jarosh, H. El Ni?o chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator[J]. Science, 1994, 264(5155): 72-74 [11] 美國(guó)National Science Foundation. DDDAS: Dynamic Data Driven Applications Systems[EB/OL]. http://www./funding [12] Oguchi T, Nijmeijer H. Prediction of chaotic behavior[J]. IEEE Trans. on CAS I: 2005, 52 (11): 2464-2472 [13] 呂金虎, 陸君安, 陳士化. 混沌時(shí)間序列分析及其應(yīng)用[M]. 武漢:武漢大學(xué)出版社,2002 [14] Kantz H, Ragwitz M. Phase space reconstruction and nonlinear predictions for stationary and nonstationary Markovian processes[J]. International Journal of Bifurcation and Chaos, 2004, 14(6): 1935-1945 [15] Christopher CS, Alfred W H. Medium-term prediction of chaos[J]. Physical Review Letters, 2006, 96(4): 044101 [16] Garcia SP, Almeida JS. Nearest neighbor embedding with different time delays[J]. Physical Review E, 2005, 71 (3): 037204 [17] Small M, Tse CK. Optimal embedding parameters: a modelling paradigm[J]. Physics D, 2004, 194: 283-296 [18] Kim, HS, Eykholt, R, Salas, JD. Nonlinear Dynamics, Delay Times, and Embedding Windows[J], Physica D, 1999, 127: 48-60 [19] Kugiumtzis D. State Space Reconstruction Parameters in the Analysis of Chaotic Time Series - the Role of the Time Window Length[J]. Physica D, 1996, 95: 13-27 [20] Feeny BF, Lin G. Fractional derivatives applied to phase-space reconstructions[J]. Nonlinear Dynamics, 2004, 38 (1-4): 85-99 [21] Yang SQ, Jia CY. Two practical methods of phase space reconstruction[J]. Acta Physica Sinica, 2002, 51(11): 2452-2458 [22] Li HC,Zhang JS. Local Prediction of Chaotic Time Series Based on Support Vector Machine[J]. Chinese Physics Letters, 2005, 22(11): 2776 – 2779 [23] Ren R, Xu J, Zhu SH.Prediction of chaotic time sequence using least squares support vector domain[J]. Acta Physica Sinica, 2006, 55 (2): 555-563 [24] Gan JC, Xiao XC. Nonlinear adaptive multi-step prediction of chaotic time series based on points in the neighborthood[J]. Acta Physica Sinica, 2003, 52(12): 2995-3001 [25] Ma JH,Chen YS,Xin BG. Study on prediction methods for dynamics systems of nonlinear chaotic time series[J]. Applied Mathematics and Mechanics, 2004, 25(6): 605- 611 [26] Li HC, Zhang JS,Xiao XC. Neural Volterra filter for chaotic time series prediction[J]. Chinese Physics, 2005, 14(11): 2181-2188 [27] Cui WZ, Zhu CC, Bao WX, Liu JH. Chaotic time series prediction using mean-field theory for support vector machine[J]. Chinese Physics, 2005, 14(5): 922-919 [28] 楊正瓴,張廣濤,陳紅新,林孔元. 短期負(fù)荷預(yù)測(cè)“負(fù)荷趨勢(shì)加混沌”法的參數(shù)優(yōu)化[J]. 電網(wǎng)技術(shù),2005,29(4):27 – 30, 44 [29] Mark A Cane. The evolution of El Ni?o, past and future[J]. Earth and Planetary Science Letters, 2005, 230 (3-4): 227-240 [30] Dake Chen, M A Cane, A Kaplan, S E Zebiak, D Huang, Predictability of El Ni?o in the past 148 years[J]. Nature, 428, 733-736, 2004. [31] Michael E Mann, Mark A Cane, Stephen E Zebiak, Amy ClementT. Volcanic and Solar Forcing of the Tropical Pacific over the Past 1000 Years[J]. Journal Of Climate, 2005, 18(3): 447-456 [32] J Lean, G Rottman, J Harder, G Kopp. SORCE contributions to new understanding of global change and solar variability[J]. Solar Physics, 2005, 230(1-2): 27-53 [33] J Hansen, M Sato, R Ruedy, et al. Efficacy of climate forcings[J]. Journal Of Geophysical Research-Atospheres, 2005, 110 (D18): Art. No. D18104 [34] Ping Chang, Yue Fang, R. Saravanan, Link Ji, Howard Seidel1. The cause of the fragile relationship between the Pacific El Ni?o and the Atlantic Ni?o [J]. Nature, 2006, 443(7109): 324-328 [35] P. Foukal, C. Fr?hlich, H. Spruit and T. M. L. Wigley. Variations in solar luminosity and their effect on the Earth's climate[J]. Nature, 2006, 443(7108): 161-166 [36] 韓延本,趙娟,李志安. 由地球自轉(zhuǎn)的年際變化預(yù)測(cè)El Ni?o事件[J]. 科學(xué)通報(bào),2001, 46(22): 1858-1861 [37] 鄭大偉,丁曉利,周永宏,陳永奇,李志林,廖新浩. El Ni?o事件的前兆現(xiàn)象在日長(zhǎng)和海平面觀測(cè)中的反映[J]. 科學(xué)通報(bào),2000, 45(23):2572-2576 [38] 韓延本,李志安,趙娟. 天文學(xué)與自然災(zāi)害的相關(guān)研究[J]. 北京師范大學(xué)學(xué)報(bào):自然科學(xué)版,2000, 36(4): 555-557 [39] 任振球. 全球變化研究的新思維[J]. 地學(xué)前緣,2002, 9(1): 27-33 [40] 蘇旸. 氣候變化的天文理論[J]. 地球物理學(xué)進(jìn)展,2000,15(3): 102-111 [41] 謝炯光,曾琮,紀(jì)忠萍. 中國(guó)近30 年來(lái)氣象統(tǒng)計(jì)預(yù)報(bào)進(jìn)展[J]. 氣象科技, 2003, 31(2): 67 –83 [42] F. Atger. The Skill of Ensemble Prediction Systems [J]. Monthly Weather Review, 1999, 127(9): 1941–1953 http://blog.sciencenet.cn/blog-107667-381404.html 上一篇:[請(qǐng)教] 宇宙膨脹的加速度是多少? 下一篇:[建議] 成立“預(yù)測(cè)”圈子(更新中) |
|
|
來(lái)自: 一劍倚天寒 > 《復(fù)雜網(wǎng)絡(luò)》