最近看了July的一些關(guān)于Java處理海量數(shù)據(jù)的問題研究,深有感觸,鏈接:http://blog.csdn.net/v_july_v/article/details/6685962
感謝July ^_^
他用的是Java的Hash Map等方法做了處理,講解的非常深刻入骨
我也一時興起,想拿Python試試刀,看看Python對于海量數(shù)據(jù)的處理能力如何。無奈在百度和Google輸入“Python 海量數(shù)據(jù)”都無果。可能是國內(nèi)使用python的不多,用python處理海量數(shù)據(jù)的就更少了。不過這澆滅不了我的欲望,哈哈
打算拿July的其中一個問題來試驗(yàn)一下:
[plain] view plaincopy
- <strong>海量日志數(shù)據(jù),提取出某日訪問百度次數(shù)最多的那個IP。</strong>
July給出的解決方案:
[plain] view plaincopy
- 方案1:首先是這一天,并且是訪問百度的日志中的IP取出來,逐個寫入到一個大文件中。注意到IP是32位的,最多有2^32個IP。同樣可以采用映射的方法,比如模1000,把整個大文件映射為1000個小文件,再找出每個小文中出現(xiàn)頻率最大的IP(可以采用hash_map進(jìn)行頻率統(tǒng)計,然后再找出頻率最大的幾個)及相應(yīng)的頻率。然后再在這1000個最大的IP中,找出那個頻率最大的IP,即為所求。
下手吧!
(一)生成數(shù)據(jù)
我首先構(gòu)造1億個IP,這些IP前兩段都是“10.197”,后兩段為0-255的隨機(jī)數(shù)
把這1億個IP存入一個文本文件中
Python代碼如下:
[python] view plaincopy
- __author__ = "Wally Yu (dayu.ebay@gmail.com)"
- __date__ = "$Date: 2012/04/09 $"
-
- def generateRandom(rangeFrom, rangeTo):
- import random
- return random.randint(rangeFrom,rangeTo)
-
- def generageMassiveIPAddr(fileLocation,numberOfLines):
- IP = []
- file_handler = open(fileLocation, 'a+')
- for i in range(numberOfLines):
- IP.append('10.197.' + str(generateRandom(0,255))+'.'+ str(generateRandom(0,255)) + '\n')
-
- file_handler.writelines(IP)
- file_handler.close()
-
- if __name__ == '__main__':
- from time import ctime
- print ctime()
- for i in range(10):
- print ' ' + str(i) + ": " + ctime()
- generageMassiveIPAddr('d:\\massiveIP.txt', 10000000)
- print ctime()
這里插一下,我的軟件硬件環(huán)境:
硬件:
- ThinkPad T420(CPU: i7, 內(nèi)存16G)
軟件:
-OS: WinXP32位 (只認(rèn)出3.6G內(nèi)存)
- Python:2.7
從Python的print日志中基本可以看出,生成一千萬條IP地址大概需要1分鐘,生成1億條記錄需要10分鐘
占據(jù)硬盤空間:1.4G
日志:
[python] view plaincopy
- Mon Apr 09 16:52:28 2012
- 0: Mon Apr 09 16:52:28 2012
- 1: Mon Apr 09 16:53:28 2012
- 2: Mon Apr 09 16:54:29 2012
- 3: Mon Apr 09 16:55:30 2012
- 4: Mon Apr 09 16:56:32 2012
- 5: Mon Apr 09 16:57:33 2012
- 6: Mon Apr 09 16:58:36 2012
- 7: Mon Apr 09 16:59:36 2012
- 8: Mon Apr 09 17:00:36 2012
- 9: Mon Apr 09 17:01:35 2012
- Mon Apr 09 17:02:36 2012
(二)處理思路假設(shè)現(xiàn)在可用內(nèi)存僅為128M,而每行IP經(jīng)計算需要14Byte
因?yàn)閿?shù)據(jù)太大,把1億條數(shù)據(jù)載入內(nèi)存,再做排序會導(dǎo)致內(nèi)存溢出。July的思想:“以大化小,分而治之”非常合適,我轉(zhuǎn)化后的操作思路:
1. 每行IP需要14B空間,那么128M內(nèi)存最多可以處理 128M / 14B = 9142857個IP
把每36571429個IP拆成一個小文件保存起來,每個小文件的大小小于等于128M,共將生成11個文件
2. 對每個小文件用Hash Table處理,Python有自己非常高效的Hash Table:Dictionary!
具體處理如下:
1). 構(gòu)建名為“Result”的Dictionary,“key”為IP地址,“value”為該IP地址出現(xiàn)的次數(shù),用來記錄11個文件每一個的最多出現(xiàn)的IP
2). 構(gòu)建名為“IP”的Dictionary,“key”為IP地址,“value”為該IP地址出現(xiàn)的次數(shù),用來記錄每一個小文件的所有IP地址
3). 讀入每一條IP地址到“IP” Dictionary,如果該IP地址出現(xiàn)過,把相應(yīng)的value的值加1;如果該IP地址沒有出現(xiàn)過,則key=IP地址,value=1
4). 對“IP” Dictionary進(jìn)行內(nèi)排序,返回最大的IP地址(如果有若干個最大值是一樣的,就都返回)
5). 將返回值存入“Result” Dictionary
6). 對“Result”進(jìn)行內(nèi)排序,返回最大的IP地址(如果有若干個最大值是一樣的,就都返回)
(三)實(shí)現(xiàn)
1)拆分成小文件
代碼如下:
[python] view plaincopy
- __author__ = "Wally Yu (dayu.ebay@gmail.com)"
- __date__ = "$Date: 2012/04/10 $"
-
- from time import ctime
- def splitFile(fileLocation, targetFoler):
- file_handler = open(fileLocation, 'r')
- block_size = 9142857
- line = file_handler.readline()
- temp = []
- countFile = 1
- while line:
- for i in range(block_size):
- if i == (block_size-1):
- # write block to small files
- file_writer = open(targetFoler + "\\file_"+str(countFile)+".txt", 'a+')
- file_writer.writelines(temp)
- file_writer.close()
- temp = []
- print " file " + str(countFile) + " generated at: " + str(ctime())
- countFile = countFile + 1
- else:
- temp.append(file_handler.readline())
-
- file_handler.close()
-
- if __name__ == '__main__':
- print "Start At: " + str(ctime())
- splitFile("d:\\massiveIP.txt", "d:\\massiveData")
運(yùn)行后的log如下:
[plain] view plaincopy
- Start At: Tue Apr 10 10:56:25 2012
- file 1 generated at: Tue Apr 10 10:56:37 2012
- file 2 generated at: Tue Apr 10 10:56:47 2012
- file 3 generated at: Tue Apr 10 10:57:00 2012
- file 4 generated at: Tue Apr 10 10:57:14 2012
- file 5 generated at: Tue Apr 10 10:57:26 2012
- file 6 generated at: Tue Apr 10 10:57:42 2012
- file 7 generated at: Tue Apr 10 10:57:53 2012
- file 8 generated at: Tue Apr 10 10:58:04 2012
- file 9 generated at: Tue Apr 10 10:58:16 2012
- file 10 generated at: Tue Apr 10 10:58:27 2012
- file 11 generated at: Tue Apr 10 10:58:38 2012
可見拆分一個文件需要費(fèi)時10-15秒,拆分文件總共耗時2分14秒
2). 找出出現(xiàn)次數(shù)最大的IP:
代碼如下:
[python] view plaincopy
- __author__ = "Wally Yu (dayu.ebay@gmail.com)"
- __date__ = "$Date: 2012/04/10 $"
-
- import os
- from time import ctime
-
- def findIP(targetFolder):
- Result = {}
- IP = {}
- for root, dirs, files in os.walk(targetFolder):
- for f in files:
- # read small files
- file_handler = open(os.path.join(targetFolder, f), 'r')
- lines = file_handler.readlines()
- file_handler.close()
- # get IP in file, store to IP Dictionary
- for line in lines:
- if line in IP:
- IP[line] = IP[line] + 1
- else:
- IP[line] = 1
- # sort Dictionary
- IP = sorted(IP.items(), key=lambda d: d[1])
- # get max item(s), store to Result Dictionary
- maxItem = IP[-1][1]
- print ' File ' + str(f) + ":"
- print " maxItem: " + str(IP[-1])
- tempTuple = IP.pop()
- while tempTuple[1] == maxItem:
- if tempTuple[0] in Result:
- Result[tempTuple[0]] = Result[tempTuple[0]] + 1
- else:
- Result[tempTuple[0]] = tempTuple[1]
- tempTuple = IP.pop()
- IP = {}
- print ' Finished: ' + ctime()
-
- print sorted(Result.items(), key=lambda d: d[1])
-
- if __name__ == '__main__':
- print 'Start: ' + ctime()
- findIP("d:\\massiveData")
- print 'End: ' + ctime()
運(yùn)行后的log如下:
[plain] view plaincopy
- Start: Thu Apr 12 10:20:01 2012
- File file_1.txt:
- maxItem: ('10.197.223.85\n', 190)
- Finished: Thu Apr 12 10:20:23 2012
- File file_10.txt:
- maxItem: ('10.197.44.215\n', 194)
- Finished: Thu Apr 12 10:20:37 2012
- File file_11.txt:
- maxItem: ('10.197.251.171\n', 181)
- Finished: Thu Apr 12 10:20:48 2012
- File file_2.txt:
- maxItem: ('10.197.181.190\n', 191)
- Finished: Thu Apr 12 10:21:00 2012
- File file_3.txt:
- maxItem: ('10.197.135.27\n', 193)
- Finished: Thu Apr 12 10:21:14 2012
- File file_4.txt:
- maxItem: ('10.197.208.113\n', 192)
- Finished: Thu Apr 12 10:21:24 2012
- File file_5.txt:
- maxItem: ('10.197.120.160\n', 190)
- Finished: Thu Apr 12 10:21:34 2012
- File file_6.txt:
- maxItem: ('10.197.69.155\n', 193)
- Finished: Thu Apr 12 10:21:44 2012
- File file_7.txt:
- maxItem: ('10.197.88.144\n', 192)
- Finished: Thu Apr 12 10:21:55 2012
- File file_8.txt:
- maxItem: ('10.197.103.234\n', 193)
- Finished: Thu Apr 12 10:22:08 2012
- File file_9.txt:
- maxItem: ('10.197.117.46\n', 192)
- Finished: Thu Apr 12 10:22:20 2012
- [('10.197.251.171\n', 181), ('10.197.120.160\n', 190), ('10.197.223.85\n', 190), ('10.197.181.190\n', 191), ('10.197.117.46\n', 192), ('10.197.208.113\n', 192), ('10.197.88.144\n', 192), ('10.197.147.29\n', 193), ('10.197.68.183\n', 193), ('10.197.69.155\n', 193), ('10.197.103.234\n', 193), ('10.197.135.27\n', 193), ('10.197.44.215\n', 194)]
- End: Thu Apr 12 10:22:21 2012
由此可見,最大的IP地址為:“10.197.44.215”,共出現(xiàn)194次!
而Python的計算時間為2分20秒,非???img doc360img-src='http://image58.360doc.com/DownloadImg/2013/01/2414/29811983_1.gif' alt="大笑" src="http://image58.360doc.com/DownloadImg/2013/01/2414/29811983_1.gif" style="border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; border-width: initial;">
(四)引申測試
以上是在假設(shè)內(nèi)存僅為128M下的計算時間,為了測試Python真正的執(zhí)行效率,打算再寫一算法,將所有1.4G的數(shù)據(jù)一次性導(dǎo)入內(nèi)存,并作內(nèi)排序,看看它的執(zhí)行效率
代碼如下:
[python] view plaincopy
- __author__ = "Wally Yu (dayu.ebay@gmail.com)"
- __date__ = "$Date: 2012/04/10 $"
-
- import os
- from time import ctime
-
- def findIPAtOnce(targetFile):
- print "Started At: " + ctime()
- Result = {}
- file_handler = open(targetFile, 'r')
- lines = file_handler.readlines()
- file_handler.close()
- print "File Read Finished At: " + ctime()
-
- for line in lines:
- if line in Result:
- Result[line] = Result[line] + 1
- else:
- Result[line] = 1
- print "Write to Dic Finished At: " + ctime()
-
- Result = sorted(Result.items(), key=lambda d: d[1])
- print "Sorting Finished At: " + ctime()
-
- print 'Result:'
- for i in range(10):
- print ' ' + str(Result.pop())
-
- if __name__ == '__main__':
- findIPAtOnce("d:\\massiveIP.txt")
最后得到了Memory Error:
[plain] view plaincopy
- Traceback (most recent call last):
- File "C:/Documents and Settings/wally-yu/Desktop/findIPAtOnce.py", line 30, in <module>
- findIPAtOnce("d:\\massiveIP.txt")
- File "C:/Documents and Settings/wally-yu/Desktop/findIPAtOnce.py", line 11, in findIPAtOnce
- lines = file_handler.readlines()
- MemoryError
哈哈哈!
為了測試Python的處理速度,重新生成一個小一點(diǎn)的Txt文件,重新運(yùn)行g(shù)enerageMassiveIPAddr函數(shù),生成一千萬個IP地址
[python] view plaincopy
- if __name__ == '__main__':
- from time import ctime
- print ctime()
- for i in range(1):
- print ' ' + str(i) + ": " + ctime()
- generageMassiveIPAddr('d:\\massiveIP_small.txt', 10000000)
- print ctime()
生成后的Txt占據(jù)144M的空間
再次運(yùn)行
[plain] view plaincopy
- if __name__ == '__main__':
- findIPAtOnce("d:\\massiveIP_small.txt")
得到Log如下:
[plain] view plaincopy
- Started At: Thu Apr 12 11:03:35 2012
- File Read Finished At: Thu Apr 12 11:03:41 2012
- Write to Dic Finished At: Thu Apr 12 11:03:44 2012
- Sorting Finished At: Thu Apr 12 11:03:45 2012
- Result:
- ('10.197.222.105\n', 215)
- ('10.197.68.118\n', 210)
- ('10.197.229.152\n', 206)
- ('10.197.22.46\n', 202)
- ('10.197.98.83\n', 201)
- ('10.197.53.43\n', 201)
- ('10.197.169.65\n', 200)
- ('10.197.225.22\n', 200)
- ('10.197.146.78\n', 200)
- ('10.197.57.101\n', 200)
可見時間消耗如下:
文件數(shù)據(jù)讀?。?秒
寫入Dictionary:3秒
排序:1秒
總共耗時不過10秒,而且大多時間都是I/O的開銷?。?!
(五)小節(jié)
由以上種種可見Python對于海量數(shù)據(jù)處理的高效率,也為Python的同行處理海量數(shù)據(jù)提供了一些思路
有興趣的朋友可以拿其他語言做同樣的測試,共同進(jìn)步
(六)修改
注:
1. 以上完成于2012年4月10日,本節(jié)及以下完成于2012年4月18日
2. 六、七節(jié)的增加是由于lidguan兄發(fā)現(xiàn)的一個大漏洞而做的修改,非常感謝!具體評論見下:
我確實(shí)也是考慮不周,才導(dǎo)致了以上算法的巨大漏洞,今天做如下修改:
思路:
1. 不對大文件進(jìn)行拆分,否則會產(chǎn)生lidguan兄提到的問題
2. 假設(shè)這個一億個IP地址的重復(fù)率比較高,重復(fù)后的IP可以一次性記錄入Python Dictionary (Java Hash Map),那么就直接從大文件中一條一條讀取IP地址,記錄入Dictionary
3. 對Dictionary進(jìn)行排序并輸出
代碼:
[python] view plaincopy
- __author__ = "Wally Yu (dayu.ebay@gmail.com)"
- __date__ = "$Date: 2012/04/18 $"
-
- import os
- from time import ctime
-
- def findIPAtOnce(targetFile):
- print "Started At: " + ctime()
- Result = {}
- file_handler = open(targetFile, 'r')
-
- for line in file_handler:
- if line in Result:
- Result[line] = Result[line] + 1
- else:
- Result[line] = 1
- print "Write to Dic Finished At: " + ctime()
-
- file_handler.close()
-
- Result = sorted(Result.items(), key=lambda d: d[1])
- print "Sorting Finished At: " + ctime()
-
- print 'Result:'
- for i in range(10):
- print ' ' + str(Result.pop())
-
- if __name__ == '__main__':
- findIPAtOnce("d:\\massiveIP.txt")
Log:[plain] view plaincopy
- >>>
- Started At: Wed Apr 18 13:20:34 2012
- Write to Dic Finished At: Wed Apr 18 13:21:34 2012
- Sorting Finished At: Wed Apr 18 13:21:34 2012
- Result:
- ('10.197.200.159\n', 1713)
- ('10.197.143.163\n', 1707)
- ('10.197.68.193\n', 1693)
- ('10.197.136.119\n', 1692)
- ('10.197.71.24\n', 1692)
- ('10.197.132.242\n', 1690)
- ('10.197.4.219\n', 1688)
- ('10.197.113.84\n', 1684)
- ('10.197.204.142\n', 1681)
- ('10.197.78.110\n', 1675)
由此可見,出現(xiàn)最多的IP為“10.197.200.159”,出現(xiàn)次數(shù)1713次!
執(zhí)行時間:
- 讀取文件并寫入Dictionary:60秒
- 內(nèi)排序:小于1秒?。?!
經(jīng)過這次的修改,運(yùn)算結(jié)果相信是可靠的
(七)總結(jié)
1. 修改后的代碼是在假設(shè)IP地址的重復(fù)性比較高,可以一次性導(dǎo)入內(nèi)存中操作的前提下展開的;如果重復(fù)性低,或者更大量的數(shù)據(jù),導(dǎo)致無法一次導(dǎo)入內(nèi)存的話,就需要使用外排序來找出IP地址了
2. 希望大家多多探討,也幸虧lidguan兄的指出,否則險些釀成大錯
3. 最近在討論的純粹的QA是否有必要存在,我也來多嘴幾句,我相信這些代碼如果是經(jīng)過了QA的測試后多多少少會降低風(fēng)險,尤其是此類明顯的邏輯性的錯誤是肯定可以避免的,所以QA人員的重要性不言而喻。說要消滅QA,鄙人覺得是軟件工程思維的一種倒退