小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

三角函數(shù)公式

 phwer 2011-03-31

同角三角函數(shù)的基本關(guān)系

  倒數(shù)關(guān)系:
  tanα ·cotα=1
  sinα ·cscα=1
  cosα ·secα=1 
  商的關(guān)系: 
  sinα/cosα=tanα=secα/cscα
  cosα/sinα=cotα=cscα/secα
  平方關(guān)系:
  sin²(α)+cos²(α)=1
  1+tan²(α)=sec²(α)
  1+cot²(α)=csc²(α)

平常針對(duì)不同條件的常用的兩個(gè)公式

  sin² α+cos² α=1
  tan α *cot α=1

銳角三角函數(shù)公式

  正弦: sin α=∠α的對(duì)邊/∠α 的斜邊
  余弦:cos α=∠α的鄰邊/∠α的斜邊
  正切:tan α=∠α的對(duì)邊/∠α的鄰邊
  余切:cot α=∠α的鄰邊/∠α的對(duì)邊

二倍角公式

  sin2A=2sinA·cosA
  cos2A=cos² A-sin² A=1-2sin² A=2cos² A-1
  tan2A=(2tanA)/(1-tan² A)

三倍角公式

  
  

  

sin3α=4sinα·sin(π/3+α)sin(π/3-α)
  cos3α=4cosα·cos(π/3+α)cos(π/3-α)
  tan3a = tan a · tan(π/3+a)· tan(π/3-a)
  三倍角公式推導(dǎo) 
  sin3a
  =sin(2a+a)
  =sin2acosa+cos2asina
  =2sina(1-sin²a)+(1-2sin²a)sina
  =3sina-4sin^3a
  cos3a
  =cos(2a+a)
  =cos2acosa-sin2asina
  =(2cos²a-1)cosa-2(1-cos^a)cosa
  =4cos^3a-3cosa
  sin3a=3sina-4sin^3a
  =4sina(3/4-sin²a)
  =4sina[(√3/2)²-sin²a]
  =4sina(sin²60°-sin²a)
  =4sina(sin60°+sina)(sin60°-sina)
  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
  =4sinasin(60°+a)sin(60°-a)
  cos3a=4cos^3a-3cosa
  =4cosa(cos²a-3/4)
  =4cosa[cos²a-(√3/2)^2]
  =4cosa(cos²a-cos²30°)
  =4cosa(cosa+cos30°)(cosa-cos30°)
  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
  =-4cosasin(a+30°)sin(a-30°)
  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
  =-4cosacos(60°-a)[-cos(60°+a)]
  =4cosacos(60°-a)cos(60°+a)
  上述兩式相比可得
  tan3a=tanatan(60°-a)tan(60°+a)

半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
  sin²(a/2)=(1-cos(a))/2
  cos²(a/2)=(1+cos(a))/2
  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
  

  

和差化積

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
  
  

  

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

和差化積

  cos(α+β)=cosαcosβ-sinαsinβ
  cos(α-β)=cosαcosβ+sinαsinβ
  sin(α+β)=sinαcosβ+cosαsinβ
  sin(α-β)=sinαcosβ -cosαsinβ

積化和差

  sinαsinβ = [cos(α-β)-cos(α+β)] /2
  cosαcosβ = [cos(α+β)+cos(α-β)]/2
  sinαcosβ = [sin(α+β)+sin(α-β)]/2
  cosαsinβ = [sin(α+β)-sin(α-β)]/2

雙曲函數(shù)

  sinh(a) = [e^a-e^(-a)]/2
  cosh(a) = [e^a+e^(-a)]/2
  tanh(a) = sin h(a)/cos h(a)
  公式一:
  設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
  sin(2kπ+α)= sinα
  cos(2kπ+α)= cosα
  tan(2kπ+α)= tanα
  cot(2kπ+α)= cotα
  公式二:
  設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
  sin(π+α)= -sinα
  cos(π+α)= -cosα
  tan(π+α)= tanα
  cot(π+α)= cotα
  公式三:
  任意角α與 -α的三角函數(shù)值之間的關(guān)系:
  sin(-α)= -sinα
  cos(-α)= cosα
  tan(-α)= -tanα
  cot(-α)= -cotα
  公式四
  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
  sin(π-α)= sinα
  cos(π-α)= -cosα
  tan(π-α)= -tanα
  cot(π-α)= -cotα
  公式五:
  利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
  sin(2π-α)= -sinα
  cos(2π-α)= cosα
  tan(2π-α)= -tanα
  cot(2π-α)= -cotα
  公式六
  π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
  sin(π/2+α)= cosα
  cos(π/2+α)= -sinα
  tan(π/2+α)= -cotα
  cot(π/2+α)= -tanα
  sin(π/2-α)= cosα
  cos(π/2-α)= sinα
  tan(π/2-α)= cotα
  cot(π/2-α)= tanα
  sin(3π/2+α)= -cosα
  cos(3π/2+α)= sinα
  tan(3π/2+α)= -cotα
  cot(3π/2+α)= -tanα
  sin(3π/2-α)= -cosα
  cos(3π/2-α)= -sinα
  tan(3π/2-α)= cotα
  cot(3π/2-α)= tanα
  (以上k∈Z)
  A·sin(ωt+θ)+ B·sin(ωt+φ) =
  √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }
  √表示根號(hào),包括{……}中的內(nèi)容

誘導(dǎo)公式

  sin(-α) = -sinα
  cos(-α) = cosα
  tan (-α)=-tanα
  sin(π/2-α) = cosα
  cos(π/2-α) = sinα
  sin(π/2+α) = cosα
  cos(π/2+α) = -sinα
  sin(π-α) = sinα
  cos(π-α) = -cosα
  sin(π+α) = -sinα
  cos(π+α) = -cosα
  tanA= sinA/cosA
  tan(π/2+α)=-cotα
  tan(π/2-α)=cotα
  tan(π-α)=-tanα
  tan(π+α)=tanα
  誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限

萬能公式

  sinα=2tan(α/2)/[1+(tan(α/2))²]
  cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]
  tanα=2tan(α/2)/[1-(tan(α/2))²]
  
  

  

其它公式

  
  

  

(1) (sinα)²+(cosα)²=1
  (2)1+(tanα)²=(secα)²
  (3)1+(cotα)²=(cscα)²
  證明下面兩式,只需將一式,左右同除(sinα)²,第二個(gè)除(cosα)²即可
  (4)對(duì)于任意非直角三角形,總有
  tanA+tanB+tanC=tanAtanBtanC
  證:
  A+B=π-C
  tan(A+B)=tan(π-C)
  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
  整理可得
  tanA+tanB+tanC=tanAtanBtanC
  得證
  同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立
  由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論
  (5)cotAcotB+cotAcotC+cotBcotC=1
  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
  (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC
  (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC
  其他非重點(diǎn)三角函數(shù) 
  csc(a) = 1/sin(a)
  sec(a) = 1/cos(a)
  
  

  

編輯本段內(nèi)容規(guī)律

  三角函數(shù)看似很多,很復(fù)雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律就會(huì)發(fā)現(xiàn)三角函數(shù)各個(gè)公式之間有強(qiáng)大的聯(lián)系。而掌握三角函數(shù)的內(nèi)部規(guī)律及本質(zhì)也是學(xué)好三角函數(shù)的關(guān)鍵所在.
  1、三角函數(shù)本質(zhì):
  
  

  

[1]
 根據(jù)右圖,有
  sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。
  深刻理解了這一點(diǎn),下面所有的三角公式都可以從這里出發(fā)推導(dǎo)出來,比如以推導(dǎo)
  sin(A+B) = sinAcosB+cosAsinB 為例:
  推導(dǎo):
  首先畫單位圓交X軸于C,D,在單位圓上有任意A,B點(diǎn)。角AOD為α,BOD為β,旋轉(zhuǎn)AOB使OB與OD重合,形成新A'OD。
  A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))
  OA'=OA=OB=OD=1,D(1,0)
  ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2
  和差化積及積化和差用還原法結(jié)合上面公式可推出(換(a+b)/2與(a-b)/2)
  單位圓定義
  單位圓
  六個(gè)三角函數(shù)也可以依據(jù)半徑為一中心為原點(diǎn)的單位圓來定義。單位圓定義在實(shí)際計(jì)算上沒有大的價(jià)值;實(shí)際上對(duì)多數(shù)角它都依賴于直角三角形。但是單位圓定義的確允許三角函數(shù)對(duì)所有正數(shù)和負(fù)數(shù)輻角都有定義,而不只是對(duì)于在 0 和 π/2 弧度之間的角。它也提供了一個(gè)圖象,把所有重要的三角函數(shù)都包含了。根據(jù)勾股定理,單位圓的等式是:
  圖象中給出了用弧度度量的一些常見的角。逆時(shí)針方向的度量是正角,而順時(shí)針的度量是負(fù)角。設(shè)一個(gè)過原點(diǎn)的線,同 x 軸正半部分得到一個(gè)角 θ,并與單位圓相交。這個(gè)交點(diǎn)的 x 和 y 坐標(biāo)分別等于 cos θ 和 sin θ。圖象中的三角形確保了這個(gè)公式;半徑等于斜邊且長度為1,所以有 sin θ = y/1 和 cos θ = x/1。單位圓可以被視為是通過改變鄰邊和對(duì)邊的長度,但保持斜邊等于 1的一種查看無限個(gè)三角形的方式。
  兩角和公式
  
  

  

sin(A+B) = sinAcosB+cosAsinB
  sin(A-B) = sinAcosB-cosAsinB
  cos(A+B) = cosAcosB-sinAsinB
  cos(A-B) = cosAcosB+sinAsinB
  tan(A+B) = (tanA+tanB)/(1-tanAtanB)
  tan(A-B) = (tanA-tanB)/(1+tanAtanB)
  cot(A+B) = (cotAcotB-1)/(cotB+cotA)
  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多