傳輸線的特征阻抗從電池的角度來看,一旦設(shè)計(jì)工程師將電池的引線連入傳輸線的前端,就總有一個常量值的電流從電池中流出,并且保持電壓信號的穩(wěn)定不變。也許有人會問,是什么樣的電子元器件具有這樣的行為?加入恒定不變的電壓信號時會維持恒定不變的電流值,當(dāng)然是電阻。
而對電池來說,信號沿傳輸線向前傳播時,每隔10ps時間間隔,會新增加0.06英寸的傳輸線段被充電至1V,從電池中獲得的新增加的電荷確保從電池中維持一個穩(wěn)定的電流,從電池吸收恒定的電流,傳輸線就等同于一個電阻,并且阻值恒定。我們稱之為傳輸線的浪涌阻抗。
同樣,當(dāng)信號沿傳輸線向前傳播時,每傳播一定的距離,信號會不斷地探查信號線的電環(huán)境,并且試圖確定信號進(jìn)一步向前傳播時的阻抗。一旦信號已經(jīng)加入到傳輸線上并且沿傳輸線向前傳播,信號本身就一直在考查到底需要多大的電流來充電10ps 時間間隔內(nèi)所傳播的傳輸線長度,并保持將這一部分的傳輸線段充電到1V。這正是我們要分析的瞬間阻抗值。
從電池本身的角度來看,如果信號以恒定的速度沿傳輸線方向傳播,而且假定傳輸線具有一致的橫斷面,那么信號每傳播一個固定的長度(比如10ps時間間隔內(nèi)信號傳播的距離),那么需要從電池中獲取同等數(shù)量的電荷來確保將這一段傳輸線充電到同樣的信號電壓。信號每傳播一個固定的距離,都會從電池獲取同樣的電流,并且保持信號電壓一致,在信號傳播過程中,傳輸線上各處的瞬間阻抗都是一致的。
信號沿傳輸線傳播過程當(dāng)中,如果傳輸線上各處具有一致的信號傳播速度,并且單位長度上的電容也一樣,那么信號在傳播過程中總是看到完全一致的瞬間阻抗。由于在整個傳輸線上阻抗維持恒定不變,我們給出一個特定的名稱,來表示特定的傳輸線的這種特征或者是特性,稱之為該傳輸線的特征阻抗。特征阻抗是指信號沿傳輸線傳播時,信號看到的瞬間阻抗的值。如果信號沿傳輸線在傳播的過程當(dāng)中,任何時候信號看到的特征阻抗都保持一致的話,那么這樣的傳輸線就稱為受控阻抗的傳輸線。
傳輸線特征阻抗是設(shè)計(jì)中最重要的因素
傳輸線的瞬間阻抗或者是特征阻抗是影響信號品質(zhì)的最重要的因素。如果信號傳播過程中,相鄰的信號 傳播間隔之間阻抗保持一致,那么信號就可以十分平穩(wěn)地向前傳播,因而情況變得十分簡單。如果相鄰的信號傳播間隔之間存在差異,或者說阻抗發(fā)生了改變,信號中能量的一部分就會往回反射,信號傳輸?shù)倪B續(xù)性也會被破壞。
為了確保最佳的信號質(zhì)量,信號互聯(lián)設(shè)計(jì)的目標(biāo)就是要確保信號在傳輸過程中看到的阻抗盡可能地保持恒定不變。這里主要是指要保持傳輸線的特征阻抗為常量。所以設(shè)計(jì)生產(chǎn)制造受控阻抗的PCB板就變得越來越重要。而至于任何其它的設(shè)計(jì)訣竅諸如最小化金手指長度、終端匹配、菊花鏈連接或者是分支連接等等都是為了確保信號能夠看到一致的瞬間阻抗。
特征阻抗的計(jì)算
從上述簡單的模型中我們可以推算出特征阻抗的值,即信號在傳輸過程中看到的瞬間阻抗的值。信號在每一個傳播間隔里看到的阻抗Z有同基本的關(guān)于阻抗的定義一致
Z=V/I
這里的電壓V是指加入到傳輸線上的信號電壓,而電流I是指在每一個時間間隔δt內(nèi)從電池中得到的電荷總量δQ,所以
I=δQ/δt
流入傳輸線中的電荷(這些電荷最終來自信號源),用于將信號在傳播過程中新增的信號線與返回通路之間構(gòu)成的電容δC充電至電壓V,所以
δQ=VδC
我們可以將信號在傳播過程中每行進(jìn)一定的距離而導(dǎo)致的電容同傳輸線單位長度上的電容值CL以及信號在傳輸線上傳播的速度U聯(lián)系起來。同時信號傳播的距離是速度U乘以時間間隔δt。所以
δC= CL U δt
將以上所有的等式結(jié)合起來,我們可以推導(dǎo)出來瞬間阻抗為:
Z=V/I=V/(δQ/δt)=V/(VδC/δt)=V/(V CL U δt /δt)=1/(CL U)
可以看到瞬間阻抗同單位傳輸線長度上的電容值以及信號傳輸?shù)乃俣扔嘘P(guān)。同樣也可以人為這就是傳輸線特征阻抗的定義。為了將特征阻抗從實(shí)際阻抗Z中區(qū)分開來,特意為特征阻抗加入一個下標(biāo)0,從上面的推導(dǎo)中已經(jīng)得到了信號傳輸線的特征阻抗:
Z0=1/(CL U)
如果傳輸線上單位長度的電容值以及信號在傳輸線上傳播的速度保持為常量,那么該傳輸線就在其長度范圍內(nèi)具有恒定不變的特征阻抗,這樣的傳輸線就稱之為受控阻抗的傳輸線。
從以上簡要的說明中看出,關(guān)于電容的一些直觀的認(rèn)識可以同新發(fā)現(xiàn)的特征阻抗的直觀的認(rèn)識聯(lián)系起來。換句話說,如果把PCB中的信號連線拓寬,那么傳輸線單位長度上的電容值就會增大,而傳輸線的特征阻抗就可以降低。
耐人尋味的話題
經(jīng)??梢月牭接嘘P(guān)傳輸線特征阻抗的一些混淆的說法。通過上面的分析知道,將信號源連接到傳輸線上之后,應(yīng)該可以看到某一個值的傳輸線特征阻抗,舉例來說50Ω,然而如果將一個歐姆表同一段3英尺長的RG58線纜連接時,測量到的阻抗卻是無窮大。
問題的答案在于從任何傳輸線前端看過去的阻抗值是隨時間變化的。如果測量線纜阻抗的時間短到可以和信號在線纜中來回往返一次的時間可以比擬時,你就可以測量到該線纜的浪涌阻抗或者又稱為線纜的特征阻抗。然而如果等待足夠的時間的話,就會有一部分能量反射回來并且為測量儀器檢測到,這時就可以檢測到阻抗的變化,通常情況下,在這一過程中,阻抗會來回變化,直到阻抗值達(dá)到一個穩(wěn)定的狀態(tài):如果線纜的末端是開路,最終的阻抗值為無窮大,如果線纜的末端是短路,最終的阻抗值為零。
對于3英尺長的RG58線纜來說,必須在小于3ns的時間間隔內(nèi)完成阻抗的測量過程。這就是時域反射計(jì)(TDR)要完成的工作。TDR可以測量傳輸線的動態(tài)阻抗。如果需要花1s的時間間隔來測量3英尺長的RG58線纜的阻抗,那么在這一段時間間隔內(nèi)信號已經(jīng)來回反射了幾百萬次,那么你可能從阻抗的巨大的變動中得到完全不同的阻抗的值,最終得到的結(jié)果是無窮大,因?yàn)榫€纜的終端是開路。